Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T23:24:58.541Z Has data issue: false hasContentIssue false

Electric and Magnetic Phenomena Studied by In Situ Transmission Electron Microscopy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

There is a wide array of technologically significant materials whose response to electric and magnetic fields can make or break their utility for specific applications. Often, these electrical and magnetic properties are determined by nanoscale features that can be most effectively understood through electron microscopy studies. Here, we present an overview of the capabilities for transmission electron microscopy for uncovering information about electric and magnetic properties of materials in the context of operational devices. When devices are operated during microscope observations, a wealth of information is available about dynamics, including metastable and transitional states. Additionally, because the imaging beam is electrically charged, it can directly capture information about the electric and magnetic fields in and around devices of interest. This is perhaps most relevant to the growing areas of nanomaterials and nanodevice research. Several specific examples are presented of materials systems that have been explored with these techniques. We also provide a view of the future directions for research.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ford, B.J., The Leeuwenhoek Legacy (Biopress Ltd., Bristol, 1991).Google Scholar
2.Cooper, D., Twitchett-Harrison, A.C., Midgley, P.A., Dunin-Borkowski, R.E., J. Appl. Phys. 101, 094508 (2007).CrossRefGoogle Scholar
3.Lau, J.W., Schofield, M.A., Zhu, Y., Ultramicroscopy 107, 396 (2007).CrossRefGoogle Scholar
4.Murakami, Y., Shindo, D., Mater. Trans. 46, 743 (2005).CrossRefGoogle Scholar
5.Schofield, M.A., Beleggia, M., Lau, J. W., and Zhu, Y., JEOL News, 2 (2007).Google Scholar
6.Lehmann, M., Lichte, H., Microsc. Microanal. 8, 447 (2002).CrossRefGoogle Scholar
7.Nugent, K.A., Gureyev, T.E., Cookson, D.F., Paganin, D., Barnea, Z., Phys. Rev. Lett. 77, 2961 (1996).CrossRefGoogle Scholar
8.Beleggia, M., Schofield, M.A., Volkov, V.V., Zhu, Y., Ultramicroscopy 102, 37 (2004).CrossRefGoogle Scholar
9.Lau, J.W., Beleggia, M., Schofield, M.A., Neumark, G.F., Zhu, Y., J. Appl. Phys. 97, 10E702 (2005).CrossRefGoogle Scholar
10.Lau, J.W., Beleggia, M., Zhu, Y., J. Appl. Phys. 102, 043906 (2007).CrossRefGoogle Scholar
11.Hu, H., Wang, H., McCartney, M.R., Smith, D.J., Phys. Rev. B. 73, 153401 (2006).CrossRefGoogle Scholar
12.Brownlie, C., McVitie, S., Chapman, J.N., Wilkinson, C.D.W., J. Appl. Phys. 100, 033902 (2006).CrossRefGoogle Scholar
13.Bromwich, T.J., Kasama, T., Chong, R.K.K., Dunin-Borkowski, R.E., Petford-Long, A.K., Heinonen, O.G., Ross, C.A., Nanotechnology 17, 4367 (2006).CrossRefGoogle Scholar
14.Togawa, Y., Harada, K., Akashi, T., Kasai, H., Matsuda, T., Maeda, A., Tonomura, A., Physica C 426, 141 (2005).CrossRefGoogle Scholar
15.Tonomura, A., Kasai, H., Kamimura, O., Matsuda, T., Harada, K., Yoshida, T., Akashi, T., Shimoyama, J., Kishio, K., Hanaguri, T., Kitazawa, K., Masui, T., Tajima, S., Koshizuka, N., Gammel, P.L., Bishop, D., Sasase, M., Okayasu, S., Phys. Rev. Lett. 88, 237001 (2002).CrossRefGoogle Scholar
16.Spence, J.C.H., Lo, W., Kuwabara, M., Ultramicroscopy 33, 69 (1990).CrossRefGoogle Scholar
17.Ross, F.M., Hull, R., Bahnck, D., Bean, J.C., Peticolas, L.J., Hamm, R.A., Huggins, H.A., J. Vac. Sci. Technol. B 10, 2008 (1992).CrossRefGoogle Scholar
18.Ross, F.M., Hull, R., Bahnck, D., Bean, J.C., Peticolas, L.J., King, C.A., Appl. Phys. Lett. 62, 1426 (1993).CrossRefGoogle Scholar
19.Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., Ross, F.M., Nat. Mater. 2, 532 (2003).CrossRefGoogle Scholar
20.Radisic, A., Vereecken, P.M., Searson, P.C., Ross, F.M., Surf. Sci. 600, 1817 (2006).CrossRefGoogle Scholar
21.Radisic, A., Ross, F.M., Searson, P.C., J. Phys. Chem. B 110, 7862 (2006).CrossRefGoogle Scholar
22.Lenk, A., Lichte, H., Muehle, U., J. Electron. Microsc. 54, 351 (2005).Google Scholar
23.Frabboni, S., Matteucci, G., Pozzi, G., Vanzi, M., Phys. Rev. Lett. 55, 2196 (1985).CrossRefGoogle Scholar
24.Rau, W.D., Schwander, P., Ourmazd, A., Phys. Status Solidi B 222, 213 (2000).3.0.CO;2-H>CrossRefGoogle Scholar
25.Rau, W.D., Schwander, P., Baumann, F.H., Hoppner, W., Ourmazd, A., Phys. Rev. Lett. 82, 2614 (1999).CrossRefGoogle Scholar
26.Twitchett, A.C., Dunin-Borkowski, R.E., Midgley, P.A., Phys. Rev. Lett. 88, 238302 (2002).CrossRefGoogle Scholar
27.Twitchett, A.C., Dunin-Borkowski, R.E., Broom, R.F., Midgley, P.A., J. Phys.: Condens. Matter 16, S181 (2004).Google Scholar
28.Matteucci, G., Missiroli, G.F., Muccini, M., Pozzi, G., Ultramicroscopy 45, 77 (1992).CrossRefGoogle Scholar
29.Cumings, J., Zettl, A., McCartney, M.R., Spence, J.C.H., Phys. Rev. Lett. 88, 056804 (2002).CrossRefGoogle Scholar
30.Portier, X., Tsymbal, E.Y., Petford-Long, A.K., Anthony, T.C., Brug, J.A., Phys. Rev. B. 58, R591 (1998).CrossRefGoogle Scholar
31.Junginger, F., Kläui, M., Backes, D., Rüdiger, U., Kasama, T., Dunin-Borkowski, R.E., Heyderman, L.J., Vaz, C.A.F., Bland, J.A.C., Appl. Phys. Lett. 90, 132506 (2007).CrossRefGoogle Scholar
32.Naitoh, Y., Takayanagi, K., Tomitori, M., Surf. Sci. 358, 208 (1996).CrossRefGoogle Scholar
33.Yamashita, J., Hirayama, H., Ohshima, Y., Takayanagi, K., Appl. Phys. Lett. 74, 2450 (1999).CrossRefGoogle Scholar
34.Svensson, K., Jompol, Y., Olin, H., Olsson, E., Rev. Sci. Instrum. 74, 4945 (2003).CrossRefGoogle Scholar
35.Ohnishi, H., Kondo, Y., Takayanagi, K., Nature 395, 780 (1998).CrossRefGoogle Scholar
36.Erts, D., Olin, H., Ryen, L., Olsson, E., Tholen, A., Phys. Rev. B. 61, 12725 (2000).CrossRefGoogle Scholar
37.Strachan, D.R., Smith, D.E., Fischbein, M.D., Johnston, D.E., Guiton, B.S., Drndic, M., Bonnell, D.A., Johnson, A.T., Nano Lett. 6, 441 (2006).CrossRefGoogle Scholar
38.Wang, Z.L., Poncharal, P., de Heer, W.A., Pure Appl. Chem. 72, 209 (2000).CrossRefGoogle Scholar
39.Wang, Z.L., Poncharal, P., de Heer, W.A., J. Phys. Chem. Solids 61, 1025 (2000).CrossRefGoogle Scholar
40.Wang, Z.L., Poncharal, P., de Heer, W.A., Microsc. Microanal. 6, 224 (2000).CrossRefGoogle Scholar
41.Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., Zettl, A., Nature 424, 408 (2003).CrossRefGoogle Scholar
42.Papadakis, S.J., Hall, A.R., Williams, P.A., Vicci, L., Falvo, M.R., Superfine, R., Washburn, S., Phys. Rev. Lett. 93, 146101 (2004).CrossRefGoogle Scholar
43.Williams, P.A., Papadakis, S.J., Patel, A.M., Falvo, M.R., Washburn, S., Superfine, R., Phys. Rev. Lett. 89, 255502 (2002).CrossRefGoogle Scholar
44.Williams, P.A., Papadakis, S.J., Patel, A.M., Falvo, M.R., Washburn, S., Superfine, R., Appl. Phys. Lett. 82, 805 (2003).CrossRefGoogle Scholar
45.Meyer, J.C., Paillet, M., Roth, S., Science 309, 1539 (2005).CrossRefGoogle Scholar
46.Meyer, J.C., Cech, J., Hornbostel, B., Roth, S., Phys. Status Solidi B 243, 3500 (2006).CrossRefGoogle Scholar
47.Cumings, J., Collins, P. G., Zettl, A., Nature 406, 586 (2000).CrossRefGoogle Scholar
48.Cumings, J., Zettl, A., Science 289, 602 (2000).CrossRefGoogle Scholar
49.Cumings, J., Zettl, A., Phys. Rev. Lett. 93, 086801 (2004).CrossRefGoogle Scholar
50.Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A., Science 283, 1513 (1999).CrossRefGoogle Scholar
51.Kizuka, T., Yamada, K., Deguchi, S., Naruse, M., Tanaka, N., Phys. Rev. B. 55, R7398 (1997).CrossRefGoogle Scholar
52.Minor, A.M., Morris, J.W., Stach, E.A., Appl. Phys. Lett. 79, 1625 (2001).CrossRefGoogle Scholar
53.Jensen, K., Girit, Ç., Mickelson, W., Zettl, A., Phys. Rev. Lett. 96, 215503 (2006).CrossRefGoogle Scholar
54.Lutwyche, M.I., Wada, Y., Appl. Phys. Lett. 66, 2807 (1995).CrossRefGoogle Scholar
55.Regan, B.C., Aloni, S., Ritchie, R.O., Dahmen, U., Zettl, A., Nature 428, 924 (2004).CrossRefGoogle Scholar
56.Svensson, K., Olin, H., Olsson, E., Phys. Rev. Lett. 93, 145901 (2004).CrossRefGoogle Scholar
57.Ziegler, K.J., Lyons, D.M., Holmes, J.D., Erts, D., Polyakov, B., Olin, H., Svensson, K., Olsson, E., Appl. Phys. Lett. 84, 4074 (2004).CrossRefGoogle Scholar
58.Regan, B.C., Aloni, S., Jensen, K., Zettl, A., Appl. Phys. Lett. 86, 123119 (2005).CrossRefGoogle Scholar
59.Sveningsson, M., Hansen, K., Svensson, K., Olsson, E., Campbell, E.E.B., Phys. Rev. B. 72, 85429 (2005).CrossRefGoogle Scholar
60.Jensen, K., Mickelson, W., Han, W., Zettl, A., Appl. Phys. Lett. 86, 173107 (2005).CrossRefGoogle Scholar
61.Yuzvinsky, T.D., Mickelson, W., Aloni, S., Begtrup, G.E., Kis, A., Zettl, A., Nano Lett. 6, 2718 (2006).CrossRefGoogle Scholar
62.Koshio, A., Yudasaka, M., Iijima, S., J. Phys. Chem. C 111, 10 (2007).CrossRefGoogle Scholar
63.Chiaramonti, A.N., Schreiber, D.K., Kabius, B., Egelhoff, W.F., Petford-Long, A.K., Microsc. Microanal. 13, 626CD (2007).CrossRefGoogle Scholar
64.Brintlinger, T., Qi, Y., Baloch, K.H., Goldhaber-Gordon, D., Cumings, J., arxiv.org/archive/cond-mat (2007); arXiv:0708.1522.Google Scholar
65.Wang, R.F., Nisoli, C., Freitas, R.S., Li, J., McConville, W., Cooley, B.J., Lund, M.S., Samarth, N., Leighton, C., Crespi, V.H., Schiffer, P., Nature 439, 303 (2006).CrossRefGoogle Scholar
66.Jooss, C., Wu, L., Beetz, T., Klie, R.F., Beleggia, M., Schofield, M.A., Schramm, S., Hoffman, J., Zhu, Y., Proc. Natl. Acad. Sci. 104, 13597 (2007).CrossRefGoogle Scholar
67.Petford-Long, A.K., Chapman, J.N., in Magnetic Microscopy of Nanostructures 4, Hopster, H., Oepen, H.P., Eds., (Springer, Berlin, 2005).Google Scholar