Hostname: page-component-6b989bf9dc-pkhfk Total loading time: 0 Render date: 2024-04-14T23:04:38.084Z Has data issue: false hasContentIssue false

Pulsed laser ablation-deposition of La0.5Sr0.5CoO3 for use as electrodes in nonvolatile ferroelectric memories

Published online by Cambridge University Press:  31 January 2011

R. Dat
Affiliation:
Department of Materials Science / Engineering, North Carolina State University, Raleigh, North Carolina 27695–7919
O. Auciello
Affiliation:
Department of Materials Science / Engineering, North Carolina State University, Raleigh, North Carolina 27695–7919
D. J. Lichtenwalner
Affiliation:
Department of Materials Science / Engineering, North Carolina State University, Raleigh, North Carolina 27695–7919
A. I. Kingon
Affiliation:
Department of Materials Science / Engineering, North Carolina State University, Raleigh, North Carolina 27695–7919
Get access

Abstract

La0.5Sr0.5CoO3 (LSCO) thin films have been deposited on (100) MgO substrates using pulsed laser ablation-deposition (PLAD). The crystallographic orientation of LSCO was found to be dependent on the surface treatment of (100) MgO prior to deposition. PLAD deposition parameters were optimized to yield LSCO films with an RMS surface roughness of 40–50 Å. A smooth surface morphology was reproduced as long as the oxygen content of the LSCO target was preserved. Otherwise, “splashing” occurred which resulted in the transfer of condensed particles from molten spherical globules of LSCO from the target to the substrate. Splashing was subsequently eliminated and smooth surface quality was restored after annealing the LSCO target at 550 °C in oxygen for 3 h. Optical emission spectroscopy (OES) of the LSCO's plume identified excited atomic cobalt neutrals, excited singly ionized strontium and lanthanum, and excited molecular LaO species. Oxygen interaction with the plume produced no new species. Furthermore, the OES data suggest that the observed LaO molecules were not created by the chemical reaction between La and O2 during ablation, but were ejected directly from the target during the PLAD process.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Al-Shareef, H. N., Bellur, K. R., Auciello, O., and Kingon, A. I., Proc. 5th Int. Symp. on Integrated Ferroelectrics, Colorado Springs, CO (1994).Google Scholar
2.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haak-ensaasen, R., and Fork, D.K., Appl. Phys. Lett. 63 (26), 35923594 (1993).CrossRefGoogle Scholar
3.Lichtenwalner, D. J., Dat, R., Auciello, O., and Kingon, A. I., Proc. 8th Int. Meeting on Ferroelectricity, Gaithersburg, MD (1994).Google Scholar
4.Mihara, T., Watanabe, H., Araujo, C. A., Cuchiaro, J. D., Scott, M. C., and McMillan, L. D., Proc. 4th Int. Symp. on Integrated Ferroelectrics, Colorado Springs, CO (1992), pp. 137157.Google Scholar
5.Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.G., Fork, D.K., Lee, J., and Safari, A., Appl. Phys. Lett. 61 (13), 15371539 (1992).CrossRefGoogle Scholar
6.Bernstein, S. D., Wong, T.Y., Kisler, Y., and Tustison, R.W., J. Mater. Res. 8, 1213 (1993).CrossRefGoogle Scholar
7.Yoo, I. K. and Desu, S.B., Proc. Int. Symp. on Applications of Ferroelectrics (1992), pp. 225228.CrossRefGoogle Scholar
8.Cheung, J. T., Morgan, P. E. D., Lowndes, D. H., Zheng, X-Y., and Breen, J., Appl. Phys. Lett. 62, (17), 20452047 (1993).CrossRefGoogle Scholar
9.Wu, X. D., Foltyn, S. R., Dye, R. C., Coulter, Y., and Muenchausen, R. E., Appl. Phys. Lett. 62 (19), 24342436 (1993).CrossRefGoogle Scholar
10.Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, J. M., van Dover, R. B., Marshall, J.H., Hsu, T. W. P., Krajewski, J. J., and Peck, W. F. Jr., Science 258, 17661769 (1992).CrossRefGoogle Scholar
11. It should be noted that some of the original research on LSCO began thirty years ago in relation to the application of LSCO as electrodes for high temperature fuel cells. See, for example, Goodenough, J.B. and Raccah, R. C., J. Appl. Phys. 36, 1031 (1963);CrossRefGoogle Scholar
Meadowcroft, D. B., Nature (London) 226, 847848 (1970).CrossRefGoogle Scholar
12.Cheung, J. T., Morgan, P. E. D., and Neurgaonkar, R., Proc. 4th Int. Symp. on Integrated Ferroelectrics (University of Colorado Press, 1992), p. 158.Google Scholar
13.Cillessen, J. F. M., Wolf, R. M., and De Veirman, A. E. M., Appl. Surf. Sci. 69, 212215 (1993).CrossRefGoogle Scholar
14.Dat, R., Lichtenwalner, D. J., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 64, 26732675 (1994).CrossRefGoogle Scholar
15.Auciello, O., Mantese, L., Duarte, J., Chen, X., Rou, S. H., Kingon, A. I., Schreiner, A. F., and Krauss, A. R., J. Appl. Phys. 73, 51975207 (1993).CrossRefGoogle Scholar
16.Lichtenwalner, D. J., Auciello, O., Dat, R., and Kingon, A. I., J. Appl. Phys. 74, 74977504 (1993).CrossRefGoogle Scholar
17.Rou, S. H., Thesis (North Carolina State University Library, 1994).Google Scholar
18.McKee, R. A., Walker, F. J., Specht, E. D., and Alexander, K. B., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), pp. 309314.Google Scholar
19.Auciello, O., Al-Shareef, N. N., Gifford, K. D., Lichtenwalner, D. J., Dat, R., Bellur, K. R., Kingon, A. I., and Ramesh, R., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), pp. 341363.Google Scholar
20.Stringanov, A. R. and Sventitiskii, N. S., Tables of Spectral Lines of Neutral and Ionized Atoms (Plenum, New York, 1968).CrossRefGoogle Scholar
21.Pearse, R. W. B. and Gaydon, A. G., The Identification of Molecular Spectra, 3rd ed. (John Wiley / Sons, New York, 1963).Google Scholar