Hostname: page-component-6b989bf9dc-md2j5 Total loading time: 0 Render date: 2024-04-14T19:34:55.986Z Has data issue: false hasContentIssue false

Growth of diamond thin films by microwave plasma chemical vapor deposition process

Published online by Cambridge University Press:  31 January 2011

H. C. Barshilia
Affiliation:
Thin Film Laboratory, Department of Physics, Indian Institute of Technology, New Delhi-110 016, India
B. R. Mehta
Affiliation:
Thin Film Laboratory, Department of Physics, Indian Institute of Technology, New Delhi-110 016, India
V. D. Vankar
Affiliation:
Thin Film Laboratory, Department of Physics, Indian Institute of Technology, New Delhi-110 016, India
Get access

Abstract

A very high vacuum compatible microwave plasma chemical vapor deposition system has been fabricated for the growth of diamond thin films. Microcrystalline diamond thin films have been grown on silicon substrates from the CH4−H2 gas mixture. Scanning electron microscopy and x-ray diffraction have been used to study the surface morphology and the crystallographic structure of the films. Optical emission spectroscopy has been used for the detection of chemical species present in the plasma. The strong dependence of the film microstructure on the intensity of CH emission line has been observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Angus, J. C., Thin Solid Films 216, 126 (1992).CrossRefGoogle Scholar
2.Spear, K. E., J. Am. Ceram. Soc. 72 (2), 171 (1989).CrossRefGoogle Scholar
3.Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
4.Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., Phys. Rev. B 38 (6), 4067 (1988).CrossRefGoogle Scholar
5.Deshpandey, C. V. and Bunshah, R. F., J. Vac. Sci. Technol. A 7 (3), 2294 (1989).CrossRefGoogle Scholar
6.Partridge, P. G., May, P. W., Rego, C. A., and Ashfold, M. N. R., Mater. Sci. Technol. 10, 505 (1994).CrossRefGoogle Scholar
7.Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).CrossRefGoogle Scholar
8.Ramesham, R. and Roppel, T., J. Mater. Res. 7, 1144 (1992).CrossRefGoogle Scholar
9.Ramesham, R. and Ellis, C., J. Mater. Res. 7, 1189 (1992).CrossRefGoogle Scholar
10.Mitsuda, Y., Yoshida, T., and Akashi, K., Rev. Sci. Instrum. 60 (2), 249 (1989).CrossRefGoogle Scholar
11.Saito, Y., Matsuda, S., and Nogita, S., J. Mater. Sci. Lett. 5, 565 (1986).CrossRefGoogle Scholar
12.Mitsuda, Y., Kojima, Y., Yoshida, T., and Akashi, K., J. Mater. Sci. 22, 1557 (1987).CrossRefGoogle Scholar
13.Reeve, S. W. and Weimer, W. A., Thin Solid Films 236, 91 (1993).CrossRefGoogle Scholar
14.Matsumoto, O., Toshima, H., and Kanzaki, Y., Thin Solid Films 128, 341 (1985).CrossRefGoogle Scholar
15.Wagner, J., Wild, Ch., Pohl, F., and Koidl, P., Appl. Phys. Lett. 48 (2), 106 (1986).CrossRefGoogle Scholar
16.Mitsuda, Y., Tanaka, K., and Yoshida, T., J. Appl. Phys. 67 (8), 3604 (1990).CrossRefGoogle Scholar
17.Balestrino, G., Marinelli, M., Milani, E., Paoletti, A., Pinter, I., Tebano, A., and Paroli, P., Appl. Phys. Lett. 62 (8), 879 (1993).CrossRefGoogle Scholar
18.Marinelli, M., Milani, E., Montuori, M., Paoletti, A., Tebano, A., and Balestrino, G., J. Appl. Phys. 76 (10), 5702 (1994).CrossRefGoogle Scholar
19.Badzian, A. R., Advances in X-Ray Analysis, edited by Barrett, C. S. (Plenum, New York, 1988), Vol. 31, p. 113.CrossRefGoogle Scholar
20.Je, J. H. and Lee, G. Y., J. Mater. Sci. 27, 6324 (1992).CrossRefGoogle Scholar
21.Weiler, M., Kleber, R., Jung, K., and Ehrhardt, H., Diamond Relat. Mater. 1, 121 (1992).CrossRefGoogle Scholar