Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T13:10:41.276Z Has data issue: false hasContentIssue false

A study of solid-state amorphization in Zr–30 at. % Al by mechanical attrition

Published online by Cambridge University Press:  31 January 2011

A. Biswas
Affiliation:
Metallurgy Division, Bhabha Atomic Research Centre, Bombay 400085, India
G. K. Dey
Affiliation:
Metallurgy Division, Bhabha Atomic Research Centre, Bombay 400085, India
A. J. Haq
Affiliation:
Metallurgy Division, Bhabha Atomic Research Centre, Bombay 400085, India
D. K. Bose
Affiliation:
Metallurgy Division, Bhabha Atomic Research Centre, Bombay 400085, India
S. Banerjee
Affiliation:
Metallurgy Division, Bhabha Atomic Research Centre, Bombay 400085, India
Get access

Abstract

Elemental powders of zirconium and aluminum in the atomic ratio of 70:30 were mechanically alloyed in an attritor under argon atmosphere using zirconia balls as milling media. Samples have been taken out for characterization after different durations of milling. The process of alloying and resultant amorphization had been studied using x-ray diffraction (XRD) and transmission electron microscopy (TEM). Scanning electron microscopy (SEM) was carried out to study the morphological changes occurring during repeated cold welding and breaking of the particles. Samples for TEM study were prepared by dispersing the mechanically attrited particles in the nickel foil by electrochemical codeposition. TEM study of the initial stages of milling revealed that localized structural changes precede the bulk amorphization process during mechanical alloying (MA). The sequence of phase evolution has been identified as (i) the formation of nanocrystalline supersaturated solid solution of aluminum in α-zirconium, (ii) amorphization of localized regions at powder interfaces, (iii) ordering of aluminum-rich regions in the metastable Zr3Al (DO19) phase, and, finally, (iv) bulk amorphization of the powders.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Benjamin, J. S., Metall. Trans. A 1, 2943 (1970).CrossRefGoogle Scholar
2.Yermakov, A. Y., Yurchikov, Y.Y., and Barinov, V.A., Phys. Met. Metall. 52, 50 (1981).Google Scholar
3.Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J.O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
4.Atzmon, M., Phys. Rev. Lett. 64, 487 (1990).CrossRefGoogle Scholar
5.Suryanarayana, C., Sundaresan, R., and Froes, F.H., Mater. Sci. Engg. A 150, 117 (1992).CrossRefGoogle Scholar
6.Suryanarayana, C. and Froes, F.H., in Proc. INCAL-91, edited by Dwarakadasa, E.S., Seshan, S., and Abraham, P.K. (M/S Navabhareath Press, 1991), p. 593.Google Scholar
7.Fecht, H. J., Hellstern, E., Fu, Z., and Johnson, W. L., Metall. Trans. A 21, 2333 (1990).CrossRefGoogle Scholar
8.Eckert, J., Schultz, L., and Urban, K., Mater. Sci. Engg. A 133, 393 (1991).CrossRefGoogle Scholar
9.Schwarz, R. B., Petrich, R.R., and Saw, C.K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
10.Politis, C. and Johnson, W. L., J. Appl. Phys. 60, 1147 (1986).CrossRefGoogle Scholar
11.Dolgin, B. P., Vanek, M. A., McGory, T., and Han, D. J., J. Non-Cryst. Solids 87, 281 (1986).CrossRefGoogle Scholar
12.Schultz, L., Hellstern, E., and Thoma, A., Europhys. Lett. 3, 39 (1987).CrossRefGoogle Scholar
13.Thompson, J. R. and Politis, C., Europhys. Lett. 3, 199 (1987).CrossRefGoogle Scholar
14.Hitaka, A., McKenna, M. J., and ElBaum, C., Appl. Phys. Lett. 50, 478 (1987).Google Scholar
15.Hellstern, E. and Schultz, L., Mater. Sci. Engg. 97, 39 (1988).CrossRefGoogle Scholar
16.Gaffet, E., Merk, N., Martin, G., and Bigot, J., J. Less-Comm. Met. 145, 251 (1988).CrossRefGoogle Scholar
17.Gaffet, E., Merk, N., Martin, G., and Bigot, J., in DGM Conf., New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Schultz, L. (Hirsau, Germany, 1988), p. 95.Google Scholar
18.Boldrick, M. S., Lee, D., and Wagner, C. N. J., J. Non-Cryst. Solids 106, 60 (1988).CrossRefGoogle Scholar
19.Shingu, P. H., Ishihara, K. N., Uenishi, K., Kuyama, J., Huang, B., and Nasu, S., in Solid State Powder Processing, edited by Clauer, A. H. and Barbadillo, J.J. (TMS, Warrendale, PA, 1990), p. 22.Google Scholar
20.Uenishi, K., Kobayashi, K. F., Ishihara, K. N., and Shingu, P. H., Mater. Sci. Forum 88–90, 459 (1992).CrossRefGoogle Scholar
21.Koch, C. C., Mat. Sci. & Tech., edited by Cahn, R. W., Hassen, P., Kramer, E. J. (VCH, Weinheim, 1991), p. 193.Google Scholar
22.Hellstern, E. and Schultz, L., Appl. Phys. Lett. 48, 124 (1986).CrossRefGoogle Scholar
23.Richards, T. G. and Johari, G. F., Philos. Mag. 58B, 445 (1988).CrossRefGoogle Scholar
24.Weeber, A. W. and Bakker, H., Chem, Z.. Phys. NF 157, 221 (1988).Google Scholar
25.Fecht, H. J., Han, G., Fu, Z., and Johnson, W. L., J. Appl. Phys. 67, 1744 (1990).CrossRefGoogle Scholar
26.Ma, E. and Atzmon, M., Phys. Rev. Lett. 67, 1126 (1991).CrossRefGoogle Scholar
27.Lim, W. Y., Sukedai, E., Hida, M., and Kaneko, K., Mater. Sci. Forum 88–90, 105 (1992).CrossRefGoogle Scholar
28.Ma, E. and Atzmon, M., Mater. Sci. Forum 88–90, 467 (1992).CrossRefGoogle Scholar
29.Schulz, R., Trudeau, M., and Huot, J. Y., Phys. Rev. Lett. 62, 2849 (1989).CrossRefGoogle Scholar
30.Qi, M., Zhu, M., Li, G. B., Sui, H. X., and Yang, D. Z., J. Mater. Sci. Lett. 12, 66 (1993).CrossRefGoogle Scholar
31.Yavari, A. R., Gialanella, S., BenAmeur, T., Cahn, R. W., and Bochu, B., J. Mater. Res. 8, 242 (1993).CrossRefGoogle Scholar
32.Mukhopadhyay, P. and Banerjee, S., in The Institution of Metallurgists, Spring Residential Conference, Phase Transformations (1979), Vol. 2, p. 41.Google Scholar
33.Haider, F., Bellon, P., and Martin, G., Phys. Rev. B 42, 8274 (1990).CrossRefGoogle Scholar