Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T03:25:53.266Z Has data issue: false hasContentIssue false

Pulsed excimer laser deposition and characterization of ferroelectric Pb(Zr0.52Ti0.48)O3 thin films

Published online by Cambridge University Press:  31 January 2011

D. Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
S.B. Krupanidhi*
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Also with The Department of Engineering Science and Mechanics.
Get access

Abstract

Lead zirconate titanate (PZT) thin films were prepared by excimer laser ablation on platinum coated silicon substrates. The composition of the films showed dependence on the fluence at low energy densities (<2 J/cm2), and less dependence on the ablation fluence was observed beyond a fluence of 2 J/cm2. A correlation among the fluence, ablation pressure, and substrate temperature has been established. Crystalline perovskite PZT films showed a dielectric constant of 800–1000, a remnant polarization of 32 μC/cm2, and a coercive field of 130 kV/cm. Films showed fatigue behavior that may be used in a device, and a close comparison of fatigue behavior between the films deposited at different energy densities indicated a better fatigue behavior for a fluence of 4 J/cm2.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kojima, M., Sunagawa, M., Seto, H., Matsui, Y., and Hamakawa, Y., Jpn. J. Appl. Phys. 22, Suppl. 1, 225 (1982).Google Scholar
2.Okuyama, M. and Hamakawa, Y., Ferroelectrics 63, 243 (1985).CrossRefGoogle Scholar
3.Kawaguchi, T., Adachi, H., Setsune, K., Yamazaki, O., and Wasa, K., Appl. Opt. 23, 2187 (1984).CrossRefGoogle Scholar
4.Wu, S.Y., Ferroelectrics 11, 379 (1976).CrossRefGoogle Scholar
5.Araujo, C.A., McMillan, L.D., Melnick, B.M., Cuchiaro, J.D., and Scott, J.F., Ferroelectrics 104, 241 (1990).CrossRefGoogle Scholar
6.Takei, W. J., Formigoni, N. P., and Francombe, M.H., J. Vac. Sci. Technol. 7, 442 (1969).Google Scholar
7.Krupanidhi, S. B., Maffei, N., Sayer, M., and El-Assal, K., J. Appl. Phys. 54, 6601 (1983).CrossRefGoogle Scholar
8.Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60, 361 (1986).CrossRefGoogle Scholar
9.Adachi, H., Mitsuyu, T., Yamazaki, O., and Wasa, K., J. Appl. Phys. 60, 736 (1986).CrossRefGoogle Scholar
10.Sreenivas, K. and Sayer, M., J. Appl. Phys. 64, 1484 (1988).CrossRefGoogle Scholar
11.Matsubara, M., Miura, S., Miyasaka, Y., and Sohata, N., J. Appl. Phys. 66, 5826 (1989).CrossRefGoogle Scholar
12.Castellano, R.N. and Feinstein, L. G., J. Appl. Phys. 50, 4406 (1979).CrossRefGoogle Scholar
13.Krupanidhi, S.B., Hu, H., and Kumar, V., J. Appl. Phys. 71, 376 (1992).CrossRefGoogle Scholar
14.Okuyama, M., Togani, Y., and Hamakawa, Y., Appl. Surf. Sci. 33/34, 625 (1988).CrossRefGoogle Scholar
15.Vest, R.W., Ferroelectrics 102, 53 (1990).CrossRefGoogle Scholar
16.Kojima, M., Okuyama, M., Nakagawa, T., and Hamakawa, Y., Jpn. J. Appl. Phys. 22, Suppl. 2, 14 (1983).CrossRefGoogle Scholar
17.Okada, M., Takai, S., Amemiya, M., and Tominaga, K., Jpn. J. Appl. Phys. 28, 1030 (1989).CrossRefGoogle Scholar
18.Budd, K.D., Dey, S.K., and Payne, D.A., Br. Ceram. Proc. 36, 107 (1985).Google Scholar
19.Fukushima, J., Kadaira, K., and Matsushita, T., J. Mater. Sci. 19, 595 (1985).CrossRefGoogle Scholar
20.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64, 2717 (1988).CrossRefGoogle Scholar
21.Payne, D.A., Bull. Am. Phys. Soc. 34, 991 (1989).Google Scholar
22.Dey, S. K. and Zuleeg, R., Ferroelectrics 108, 37 (1990).CrossRefGoogle Scholar
23.Buhay, H., Sinharoy, S., Kasner, W.H., and Francombe, M.H., Proc. Int. Symp. on Applications of Ferroelectrics, Urbana, IL, June 6–8 (1990) [IEEE Trans. Ultrason. Ferroelectr. Freq. Control], p. 139.Google Scholar
24.Boyd, I. W., Laser Processing of Thin Films and Microstructures (Springer-Verlag, 1987).CrossRefGoogle Scholar
25.Singh, R.K. and Narayan, J., Phys. Rev. 41, 8843 (1990).CrossRefGoogle Scholar
26.Roy, D., Krupanidhi, S.B., and Dougherty, J.P., J. Appl. Phys. 69, 7932 (1991).CrossRefGoogle Scholar
27.Saenger, K.L., Roy, R.A., Etzold, K.F., and Cuomo, J.J., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 115.Google Scholar
28.Venkatesan, T., Wu, X.D., Inam, A., Jeon, Y., Croft, M., Chase, E.W., Chang, C. C., Wachtman, J. B., Odom, R. W., diBrozolo, F., and Magee, C.A., Appl. Phys. Lett. 53, 1431 (1988).Google Scholar
29.Kidoh, H., Ogawa, T., Morimoto, A., and Shimizu, T., Appl. Phys. Lett. 58, 2910 (1991).CrossRefGoogle Scholar
30.Kushida, K. and Takeuchi, H., Appl. Phys. Lett. 50, 1800 (1987).Google Scholar
31.Otsubo, S., Maeda, T., Minamikawa, T., Yonezawa, Y., Morimoto, A., and Shimizu, T., Jpn. J. Appl. Phys. 29, 1, L133136 (1990).CrossRefGoogle Scholar
32.Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison- Wesley, New York, 1978), p. 102.Google Scholar
33.Greene, J. E., Barnett, S.A., Sundgren, J.E., and Rochet, A., in Ion Beam Assisted Film Growth, edited by Itoh, T. (Elsevier, Amsterdam, 1989), p. 101.CrossRefGoogle Scholar
34.Matsubara, S., Shohata, N., and Mikami, M., Jpn. J. Appl. Phys. 24, Suppl. 3, 10 (1985).CrossRefGoogle Scholar
35.Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971), p. 142.Google Scholar