Journal of Materials Research

Articles

Formation of mixed oxide powders in flames: Part I. TiO2−SiO2

Cheng-Hung Hunga1 and Joseph L. Katza1

a1 Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218

Abstract

Mixed oxide powders, e.g., Al2O3−TiO2, SiO2−GeO2, and TiO2−SiO2, are used in industry to produce ceramics, optical fibers, catalysts, and paint opacifiers. The properties of these products depend upon the morphology of the powders. Ceramics and optical fibers are produced using either a uniform mixture of multicomponent particles or a uniform solution. The desired morphology for catalysts is a high surface area and many active sites. TiO2 coated with a layer of SiO2 is the desired structure for use as a paint opacifier. In this paper, TiO2−SiO2 mixed oxide powders were synthesized using a counterflow diffusion flame burner. TiCl4 and SiCl4 were used as source materials for the formation of oxide particles in hydrogen-oxygen flames. In situ particle sizes were determined using dynamic light scattering. A thermophoretic sampling method also was used to collect particles directly onto carbon coated grids, and their size, morphology, and crystalline form examined using a transmission electron microscope. A photomultiplier at 90° to the argon ion laser beam was used to measure the light-scattering intensity. The effect of temperature and of Si to Ti concentration ratio on particle morphology was investigated. Strong temperature dependence was observed. At high temperatures, TiO2 particles were covered with discrete SiO2 particles. At low temperatures, the structure changes to TiO2 particles encapsulated by SiO2. TEM diffraction pattern measurements showed that the TiO2 is rutile and the SiO2 is amorphous silica. At high Si to Ti ratios, SiO2-encapsulated TiO2 particles form. At low Si to Ti ratios, one obtains TiO2 particles covered with discrete SiO2 particles.

(Received September 09 1991)

(Accepted March 13 1992)

0Comments
Related Content