Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-26T20:01:18.667Z Has data issue: false hasContentIssue false

Metal-insulator transition in highly disordered carbon fibers

Published online by Cambridge University Press:  31 January 2011

K. Kuriyama*
Affiliation:
Center for Materials Science and Engineering, Departments of Electrical Engineering and Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M.S. Dresselhaus
Affiliation:
Center for Materials Science and Engineering, Departments of Electrical Engineering and Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a)Permanent address: R & D Division, Sumitomo Metal Industries Ltd., Fuso 1-8, Amagasaki, Hyogo, 660 Japan.
Get access

Abstract

The electronic transition from localized to delocalized states of carriers in a disordered carbon material is investigated by photoconductivity measurements. Phenol-derived activated carbon fibers, where the carriers are strongly localized due to disorder, are heat treated in the range 300–2500 °C to give rise to the insulator-metal transition. Dark conductivity, Raman spectra, and x-ray diffraction patterns are also measured to characterize their structural changes. As a result, the transition temperature was determined to be rather low, around 1000 °C, considering the rapid decrease in the photoconductivity above this temperature. This decrease was ascribed to a fast recombination between the photoexcited carriers and the delocalized carriers generated by heat treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.McMichael, B. D., Kmetko, E. A., and Mrozowski, S., J. Opt. Soc.Am. 44, 26 (1954).Google Scholar
2.MacFarlane, J. M., Mclintock, I. S., and Orr, J. C., Phys. Status Solidi (a) 3, K239 (1970).Google Scholar
3.Steinbeck, J., Braunstein, G., Dresselhaus, M. S., Dresselhaus, G., and Venkatesan, T., in Extended Abstracts No. 8, Graphite Intercalation Compounds, edited by Dresselhaus, M. S., Dresselhaus, G., and Solin, S.A. (Materials Research Society, Pittsburgh, PA, 1986), p. 129.Google Scholar
4.Mizushima, S. and Hirabayashi, Y., Carbon 6, 123 (1968).Google Scholar
5.Ozaki, J. and Nishiyama, Y., Carbon 25, 697 (1987).Google Scholar
6.Kuriyama, K. and Dresselhaus, M. S., J. Mater. Res. 6,1040 (1991).Google Scholar
7.Tanaka, E., Fuel and Combustion 54, 241 (1987).Google Scholar
8.Rao, A. M., Fung, A. W. P., Dresselhaus, M. S., Dresselhaus, G., and Endo, M., submitted to J. Mater. Res.Google Scholar
9.Fung, A. W. P., Dresselhaus, M. S., and Endo, M. (unpublished).Google Scholar
10.Fung, A.W.P., Rao, A. M., Kuriyama, K., Dresselhaus, M. S., Dresselhaus, G., and Endo, M., to be published.Google Scholar
11.Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53, 1126 (1970).Google Scholar
12.Nishizasi, N., Chem. Eng., 496 (1984).Google Scholar
13.Saxena, R. R. and Bragg, R. H., J. Non-Cryst. Solids 28, 45 (1978).Google Scholar
14.Woolf, L. D., J. Chin, Y. R. Lin-Liu, and H. Ikezi, Phys. Rev. B 30, 861 (1984).Google Scholar
15.Heremans, J., Carbon 23, 431 (1985).Google Scholar
16.Biicker, W., J. Non-Cryst. Solids 18, 11 (1975).Google Scholar
17.Morgan, M., Thin Solid Films 7, 313 (1971).Google Scholar
18.Kupperman, D. S., Chau, C. K., and Weinstock, H., Carbon 11, 171 (1973).Google Scholar
19.Adkins, C. J., Freake, S. M., and Hamilton, E. M., Philos. Mag. 22, 183 (1970).Google Scholar
20.Bhagavat, G. K. and Nayak, K. D., Thin Solid Films 64, 57 (1979).Google Scholar
21.Hernandez, J. G., Hernandez-Calderon, I., Luengo, C. A., and Tsu, R., Carbon 20, 201 (1982).Google Scholar
22.Franklin, R. E., Proc. Roy. Soc. 209, 196 (1951).Google Scholar
23.Hirsch, P. B., Proc. Roy. Soc. 226, 143 (1954).Google Scholar
24.Loebner, E. E., Phys. Rev. 102, 1938 (1956).Google Scholar
25.Mrozowski, S., Carbon 26, 521 (1988).Google Scholar
26.Ozaki, J. and Nishiyama, Y., J. Appl. Phys. 65, 2744 (1989).Google Scholar
27.Spain, I.L., Volin, K. J., Goldberg, H. A., and Kalnin, I., J. Phys. Chem. Solids 44, 839 (1983).Google Scholar
28.Delhaes, P. and Carmona, F., in Chemistry and Physics of Carbon (cel Dekker New York, 1981), Vol. 17, p. 89.Google Scholar