Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T23:45:19.706Z Has data issue: false hasContentIssue false

Sol-gel synthesis of phosphate ceramic composites I

Published online by Cambridge University Press:  31 January 2011

Burtrand I. Lee
Affiliation:
Department of Ceramic Engineering, Clemson University, Clemson, South Carolina 29634–0907
William D. Samuels
Affiliation:
Battelle Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352
Li-Qiong Wang
Affiliation:
Battelle Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352
Gregory J. Exarhos
Affiliation:
Battelle Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352
Get access

Abstract

Monolithic gels of phosphate ceramics were synthesized using PO(OH)3−x(OR)x and alkoxides of silicon and titanium. The PO(OH)3−x(OR)x species were synthesized from the reaction of P2O5 and ethanol or n-butanol, and the products consisted of approximately equal molar amounts of mono- and dialkyl phosphate. The phosphate gels containing titanium lost less phosphorus than from the gels of silicon/phosphorus upon firing of gels in air. At phosphorus contents above 60 mole %, the gels were completely crystallized upon firing at temperatures above 700 °C, while the gels containing zinc and alkali metals remained amorphous after firing at 850 °C. Solid state nuclear magnetic resonance spectroscopy showed that all of the silicon is hexacoordinated in the phosphate gels containing silicon and titanium upon firing at temperatures above 520 °C

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ebendorf-Heidepriem, H., Seeber, W., and Ehrt, D., J. Non-Cryst. Solids 111, 74 (1993).Google Scholar
2.Hosono, H., Imai, K., and Abe, Y., J. Non-Cryst. Solids 162, 287 (1993).CrossRefGoogle Scholar
3.Miyazaki, H., Kojima, H., Hiraiwa, A., Himma, Y., and Murakami, K., J. Electrochem. Soc. 141, 734 (1994).CrossRefGoogle Scholar
4.Huang, C-Y., Agrawal, D. K., McKinstry, H.A., and Limaye, S.Y., J. Mater. Res. 9, 2005 (1994).CrossRefGoogle Scholar
5.Li, R., Clark, A. E., and Hench, L. L., in Chemical Processing of Adv. Materials, edited by Hench, L. L. and West, J.K. (Wiley-Interscience, New York, 1992), p. 627.Google Scholar
6.Dayanand, C., Sarma, R. V. G. K., Bhikshamaiah, G., and Salagram, M., J. Non-Cryst. Solids 167, 122 (1994).CrossRefGoogle Scholar
7.Fargin, E. and Duchesue, C., Olazucuga, R., Le Flem, G., Cartier, C., Canioni, L., Segonds, P., Sarger, L., and Ducasse, A., J. Non-Cryst. Solids 168, 132 (1994).CrossRefGoogle Scholar
8.Lima, E. C. and Galembeck, F., Colloids and Surfaces A 75, 65 (1993).CrossRefGoogle Scholar
9.Livage, J., Barboux, P., and Vanderborre, M. T., J. Non-Cryst. Solids 147 / 148, 18 (1992).CrossRefGoogle Scholar
10.Woignier, T., Phalippou, J., and Zarzycki, J., J. Non-Cryst. Solids 63, 117 (1984).CrossRefGoogle Scholar
11.Szu, S. P., Klein, L. C., and Greenblatt, M., J. Non-Cryst. Solids 143, 21 (1992).CrossRefGoogle Scholar
12.Kim, Y. S. and Tressler, R. E., J. Mater. Sci. 29, 2531 (1994).CrossRefGoogle Scholar
13.Beall, G. H. and Quinn, C. J., U.S. Patent No. 4 920 081 and 4 940 677 (1990); in Ceramic Transitions (Am. Ceramic Soc. Westerville, OH, 1993), Vol. 33, p. 321.Google Scholar
14.Lund, H. U. and Bjerrum, J., Ber. 64, 210 (1931).Google Scholar
15.Aizawa, M., Nosaka, Y., and Fujji, N., J. Non-Cryst. Solids 128, 77 (1991).CrossRefGoogle Scholar
16.Mudrakovskii, I. L., Mastikhin, V. M., Shmachkova, V. P., and Kotsarenko, N. S., Chem. Phys. Lett. 120, 424 (1985).CrossRefGoogle Scholar
17.Weeding, T. L., de Jong, B.H.W.S., Veeman, W.S., and Aitken, B.G., Nature (London) 318, 352 (1985).CrossRefGoogle Scholar
18.Bahn, W. A. and Quinn, C. J., Microstructures of Low Melting Temperature Glasses/Polyaryletherketone Blends, ANTEC '91 Proceedings, 1991, p. 23, 710–23, 774.Google Scholar
19.Exarhos, G. J. and Samuels, W. D., A Solution Route to the Preparation of Polymer Glass Molecular Composites, American Ceramic Society Pac Rim Meeting, November 7–10, 1993, Honolulu, Hawaii.Google Scholar