Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T20:46:55.503Z Has data issue: false hasContentIssue false

Ternary atom site location in L12-structured intermetallic compounds

Published online by Cambridge University Press:  31 January 2011

P.R. Munroe
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
I. Baker
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
Get access

Abstract

Ternary sublattice site occupancy in two L12-structured intermetallic compounds were evaluated by a transmission electron microscope technique called ALCHEMI, or atom site location by channeling enhanced microanalysis, and by x-ray diffractometry, through measuring the relative integrated intensity of fundamental and superlattice x-ray diffraction peaks. The x-ray diffractometry showed that in nickel-rich Ni3Al + Hf hafnium was found to occupy preferentially the aluminum sublattice, and in a multiphase alloy an L12-structured phase with the composition Al74.2Ti19Ni6.8 nickel atoms showed a strong preference for the titanium sublattice. The ALCHEMI data broadly agreed with the x-ray results for Ni3Al but gave completely the opposite result, i.e., a preference of nickel for the titanium sublattice, for Al3Ti. The methods of ALCHEMI and x-ray diffractometry are compared, and it is concluded that ALCHEMI data may be easily convoluted by peak overlap and delocalization effects.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).Google Scholar
2Turner, C. D., Powers, W. O., and Wert, J. A., Acta Metall. 37, 2635 (1989).CrossRefGoogle Scholar
3Huang, S. C., Hall, E. L., and Gigliotti, M. F. X., J. Mater. Res. 3, 1 (1988).CrossRefGoogle Scholar
4Vasudevan, V. K., Wheeler, R., and Fraser, H. L., in Chemical Perspectives of Microelectronic Materials, edited by Gross, M. E., Jasinski, J., and Yates, J. T., Jr. (Mater. Res. Soc. Symp. Proc. 131, Pittsburgh, PA, 1989), p. 705.Google Scholar
5Tarnacki, J. and Kim, Y-W., Dispersion Strengthened Aluminum Alloys (TMS-AIME, Warrendale, PA, 1988), p. 741.Google Scholar
6Mysko, D. D., Lumsden, J. B., Powers, W. O., and Wert, J. A., Scripta Metall. 23, 1827 (1989).Google Scholar
7Taftø, J. and Spence, J. C. H., Science 228, 217 (1982).Google Scholar
8Spence, J. C. H. and Taftø, J., J. Microscopy 130, 147 (1983).Google Scholar
9Banerjee, D., Encyclopedia of Materials Science and Engineering, Supplement #2, edited by Cahn, R. W. (1990), p. 785.Google Scholar
10Munroe, P. R. and Baker, I., submitted to Materials Characterization (1990).Google Scholar
11Baker, I. and Schulson, E. M., Phys. Status Solidi 85, 481 (1984).Google Scholar
12Krishnan, K. M., Mater. Sci. Eng. B3, 397 (1989).Google Scholar
13Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, 1978), p. 524.Google Scholar
14international Tables for X-ray Crystallography (Kynoch Press, Birmingham, England, 1962), Vol. III, p. 233.Google Scholar
15Lin, H. and Pope, D. P., J. Mater. Res. 5, 763 (1990).CrossRefGoogle Scholar
16Bentley, J., in Proc. 44th EMSA, edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1986), p. 704.Google Scholar
17Pennycook, S. J., Ultramicroscopy 26, 239 (1988).Google Scholar
18Munroe, P. R. and Baker, I., Proc. XIIth Int. Conf. for Electron Microscopy (1990), p. 448.Google Scholar
19Munroe, P. R. and Baker, I., Proc. XIIth Int. Conf. for Electron Microscopy (1990), p. 472.Google Scholar
20Porter, W. D., Hisatsune, K., Sparks, C. J., Oliver, W. C., and Here, A. D., in High-Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 657.Google Scholar
21Moringa, M., Sone, K., Kamimure, T., Ohtake, K., and Yukawe, N., J. Appl. Cryst. 21, 41 (1988).Google Scholar
22Enomoto, M. and Harada, H., Metall. Trans. A 20A, 649 (1989).Google Scholar
23Miller, M. K. and Horton, J. A., in High-Temperature Ordered Intermetallic Alloys, II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 117.Google Scholar
24Miller, M. K. and Horton, J. A., Scripta Metall. 20, 1125 (1986).Google Scholar
25Bohn, H. G., Schumacher, R., and Vianden, R. J., in High-Temperature Ordered Intermetallic Alloys, II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 123.Google Scholar
26Bohn, H. G., Williams, J. M., Barrett, J. H., and Liu, C. T., in High-Temperature Ordered Intermetallic Alloys, II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 127.Google Scholar
27Wu, Y. P., Tso, N. C., Sanchez, J. M., and Tien, J. K., Acta Metall. 37, 2835 (1989).Google Scholar