Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T10:57:03.880Z Has data issue: false hasContentIssue false

Raman spectroscopy of nanophase TiO2

Published online by Cambridge University Press:  31 January 2011

C. A. Melendres
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4837
A. Narayanasamy
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4837
V. A. Maroni
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4837
R. W. Siegel
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4837
Get access

Abstract

Raman spectra are reported for consolidated nanophase TiO2 particles in their as-compacted state and after annealing at a variety of temperatures up to 1273 K. The Raman-active bands normally observed for the rutile form of TiO2 were present in as-compacted samples having average grain sizes in the range from about 10 to 100 nm. However, significant broadening of these bands was found, which was uncorrelated with initial grain size, but not necessarily with other synthesis-related factors. This broadening decreased upon isochronal annealing at elevated temperatures in air. Based upon these observations, it is concluded that nanophase TiO2 in the as-consolidated state contains significant defect concentrations within the rutile grains and that these intragrain defects and the grain-boundary regions as well have local atomic structures with the rutile symmetry, albeit with some short-range displacements. Some sporadic sample regions containing small amounts (<5%) of the anatase form of TiO2 were also found; these traces of anatase transformed to rutile upon annealing in air at temperatures above 883 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstruc-tures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Rise National Laboratory, Roskilde, 1981), p. 15.Google Scholar
2Birringer, R., Herr, U., and Gleiter, H., Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).Google Scholar
3Siegel, R.W. and Hahn, H., in Current Trends in the Physics of Materials, edited by Yussouff, M. (World Scientific Publ. Co., Singapore, 1987), p. 403.Google Scholar
4Siegel, R. W. and Eastman, J. A., in Multicomponent Ultrafine Micro-structures, Mater. Res. Soc. Symp. Proc. 132 (1989) (in press).Google Scholar
5Zhu, X., Birringer, R., Herr, U., and Gleiter, H., Phys. Rev. B 35, 9085 (1987).CrossRefGoogle Scholar
6Herr, U., Jing, J., Birringer, R., Gonser, U., and Gleiter, H., Appl. Phys. Lett. 50, 472 (1987).CrossRefGoogle Scholar
7Horvath, J., Birringer, R., and Gleiter, H., Solid State Commun. 62, 319 (1987).CrossRefGoogle Scholar
8Mutschele, T. and Kirchheim, R., Scripta Metall. 21, 1101 (1987).CrossRefGoogle Scholar
9Siegel, R. W., Hahn, H., Ramasamy, S., Li, Z., Lu, T., and Gronsky, R., in Proc. Interface Science and Engineering '87, edited by Raj, R. and Sass, S. L., J. Physique, Colloque C5, suppl., 681 (1988); R. W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, and R. Gronsky, J. Mater. Res. 3, 1367 (1988).Google Scholar
10Li, Z., Ramasamy, S., Hahn, H., and Siegel, R. W., Mater. Lett. 6, 195 (1988).CrossRefGoogle Scholar
11Balachandran, U. and Eror, N. G., J. Solid State Chem. 42, 276 (1982).CrossRefGoogle Scholar
12Maroni, V.A., J. Phys. Chem. Solids 49, 307 (1988).Google Scholar
13Pawlewicz, W. T., Exarhos, G. J., and Conaway, W. E., Appl. Optics 22, 1837 (1983).CrossRefGoogle Scholar
14Exarhos, G.J., J. Chem. Phys. 81, 5211 (1984); Mater. Res. Soc. Symp. Proc. 48, 461 (1985).CrossRefGoogle Scholar
15Porto, S.P. S., Fleury, P. A., and Damen, T. C., Phys. Rev. 154, 522 (1967).Google Scholar
16Hara, Y. and Nicol, M., phys. stat. sol. (b) 94, 317 (1979).CrossRefGoogle Scholar
17Bursill, L. A., Hyde, B. G., Terasaki, O., and Watanabe, D., Philos. Mag. 20, 347 (1969).CrossRefGoogle Scholar
18Anderson, J. S. and Tilley, R. J. D., J. Solid State Chem. 2, 472 (1970).CrossRefGoogle Scholar
19Epperson, J.E., Siegel, R.W., White, J.W., Klippert, T. E., Narayanasamy, A., Eastman, J. A., and Trouw, F., in Multicomponent Vltra-fine Microstructures, Mater. Res. Soc. Symp. Proc. 132 (1989) (in press).Google Scholar
20Edelson, L. H. and Glaeser, A. M., J. Am. Ceram. Soc. 71, 225 (1988).CrossRefGoogle Scholar
21Vovk, S. M., Tsenter, M. Ya., Bobovich, Ya. S., and Sharygin, L. M., Opt. Spectrosc. 55, 476 (1983).Google Scholar
22Bobovich, Ya. S., Vovk, S. M., Petrov, V. I., Tsenter, M. Ya., and Sharygin, L. M., Opt. Spectrosc. 59, 834 (1985).Google Scholar