Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T07:48:06.292Z Has data issue: false hasContentIssue false

Influenza A virus transmission: contributing factors and clinical implications

Published online by Cambridge University Press:  09 December 2010

Jessica A. Belser
Affiliation:
Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
Taronna R. Maines
Affiliation:
Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
Terrence M. Tumpey
Affiliation:
Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
Jacqueline M. Katz*
Affiliation:
Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
*
*Corresponding author: Jacqueline M. Katz, Influenza Division MS G-16, 1600 Clifton Road NE, Atlanta, GA 30333, USA. E-mail: jkatz@cdc.gov

Abstract

Efficient human-to-human transmission is a necessary property for the generation of a pandemic influenza virus. To date, only influenza A viruses within the H1–H3 subtypes have achieved this capacity. However, sporadic cases of severe disease in individuals following infection with avian influenza A viruses over the past decade, and the emergence of a pandemic H1N1 swine-origin virus in 2009, underscore the need to better understand how influenza viruses acquire the ability to transmit efficiently. In this review, we discuss the biological constraints and molecular features known to affect virus transmissibility to and among humans. Factors influencing the behaviour of aerosols in the environment are described, and the mammalian models used to study virus transmission are presented. Recent progress in understanding the molecular determinants that confer efficient transmission has identified crucial roles for the haemagglutinin and polymerase proteins; nevertheless, influenza virus transmission remains a polygenic trait that is not completely understood. The clinical implications of this research, including methods currently under investigation to mitigate influenza virus human-to-human transmission, are discussed. A better understanding of the viral determinants necessary for efficient transmission will allow us to identify avian influenza viruses with pandemic potential.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010. This is a work of the US Government and is not subject to copyright protection in the USA.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Chen, W. et al. (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine 7, 1306-1312CrossRefGoogle ScholarPubMed
2Webster, R.G. et al. (1992) Evolution and ecology of influenza A viruses. Microbiology Reviews 56, 152-179CrossRefGoogle ScholarPubMed
3Fouchier, R.A. et al. (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. Journal of Virology 79, 2814-2822CrossRefGoogle ScholarPubMed
4Abdel-Ghafar, A.N. et al. (2008) Update on avian influenza A (H5N1) virus infection in humans. New England Journal of Medicine 358, 261-273Google ScholarPubMed
5Belser, J.A. et al. (2009) Past, present, and possible future human infection with influenza virus A subtype H7. Emerging Infectious Diseases 15, 859-865CrossRefGoogle ScholarPubMed
6Alford, R.H. et al. (1966) Human influenza resulting from aerosol inhalation. Proceedings of the Society for Experimental Biology and Medicine 122, 800-804CrossRefGoogle ScholarPubMed
7Bean, B. et al. (1982) Survival of influenza viruses on environmental surfaces. Journal of Infectious Diseases 146, 47-51CrossRefGoogle ScholarPubMed
8Lidwell, O.M. (1974) Aerial dispersal of micro-organisms from the human respiratory tract. Society for Applied Bacteriology Symposium Series 3, 135-154Google ScholarPubMed
9Potter, W.P. (1998) Chronicle of influenza pandemics. In Textbook of Influenza (Nicholson, K.G., Webster, R.G. and Hay, A.J., eds), pp. 3-18, Blackwell Science, OxfordGoogle Scholar
10Miller, J.M. et al. (2000) Cruise ships: high-risk passengers and the global spread of new influenza viruses. Clinical Infectious Diseases 31, 433-438CrossRefGoogle ScholarPubMed
11Mizuta, K. et al. (1995) An outbreak of influenza A/H3N2 in a Zambian school dormitory. East African Medical Journal 72, 189-190Google Scholar
12Earhart, K.C. et al. (2001) Outbreak of influenza in highly vaccinated crew of U.S. Navy ship. Emerging Infectious Diseases 7, 463-465CrossRefGoogle ScholarPubMed
13Horcajada, J.P. et al. (2003) A nosocomial outbreak of influenza during a period without influenza epidemic activity. European Respiratory Journal 21, 303-307CrossRefGoogle ScholarPubMed
14Horman, J.T. et al. (1986) An outbreak of influenza A in a nursing home. American Journal of Public Health 76, 501-504CrossRefGoogle ScholarPubMed
15Moser, M.R. et al. (1979) An outbreak of influenza aboard a commercial airliner. American Journal of Epidemiology 110, 1-6CrossRefGoogle ScholarPubMed
16Leder, K. and Newman, D. (2005) Respiratory infections during air travel. Internal Medicine Journal 35, 50-55CrossRefGoogle ScholarPubMed
17Khan, K. et al. (2009) Spread of a novel influenza A (H1N1) virus via global airline transportation. New England Journal of Medicine 361, 212-214CrossRefGoogle ScholarPubMed
18Taubenberger, J.K. and Morens, D.M. (2006) 1918 Influenza: the mother of all pandemics. Emerging Infectious Diseases 12, 15-22CrossRefGoogle ScholarPubMed
19Thompson, W.W. et al. (2004) Influenza-associated hospitalizations in the United States. Journal of the American Medical Association 292, 1333-1340CrossRefGoogle ScholarPubMed
20Beare, A.S. and Webster, R.G. (1991) Replication of avian influenza viruses in humans. Archives of Virology 119, 37-42CrossRefGoogle ScholarPubMed
21Uyeki, T.M. et al. (2002) Lack of evidence for human-to-human transmission of avian influenza A (H9N2) viruses in Hong Kong, China 1999. Emerging Infectious Diseases 8, 154-159CrossRefGoogle Scholar
22Peiris, M. et al. (1999) Human infection with influenza H9N2. Lancet 354, 916-917CrossRefGoogle ScholarPubMed
23Koopmans, M. et al. (2004) Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363, 587-593CrossRefGoogle ScholarPubMed
24Kandun, I.N. et al. (2006) Three Indonesian clusters of H5N1 virus infection in 2005. New England Journal of Medicine 355, 2186-2194CrossRefGoogle ScholarPubMed
25Olsen, S.J. et al. (2005) Family clustering of avian influenza A (H5N1). Emerging Infectious Diseases 11, 1799-1801CrossRefGoogle ScholarPubMed
26Ungchusak, K. et al. (2005) Probable person-to-person transmission of avian influenza A (H5N1). New England Journal of Medicine 352, 333-340CrossRefGoogle ScholarPubMed
27Brankston, G. et al. (2007) Transmission of influenza A in human beings. Lancet Infectious Diseases 7, 257-265CrossRefGoogle ScholarPubMed
28Mubareka, S. et al. (2009) Transmission of influenza virus via aerosols and fomites in the guinea pig model. Journal of Infectious Diseases 199, 858-865CrossRefGoogle ScholarPubMed
29Uyeki, T.M. (2009) Human infection with highly pathogenic avian influenza A (H5N1) virus: review of clinical issues. Clinical Infectious Diseases 49, 279-290CrossRefGoogle ScholarPubMed
30Rimmelzwaan, G.F. et al. (2006) Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts. American Journal of Pathology 168, 176-183; quiz 364CrossRefGoogle ScholarPubMed
31Lipatov, A.S. et al. (2009) Pathogenesis of H5N1 influenza virus infections in mice and ferret models differs according to respiratory tract or digestive system exposure. Journal of Infectious Diseases 199, 717-725CrossRefGoogle ScholarPubMed
32Olofsson, S. et al. (2005) Avian influenza and sialic acid receptors: more than meets the eye? Lancet Infectious Diseases 5, 184-188CrossRefGoogle ScholarPubMed
33Du Ry van Beest Holle, M. et al. (2005) Human-to-human transmission of avian influenza A/H7N7, The Netherlands, 2003. Euro Surveillance 10, 264-268Google ScholarPubMed
34Smith, H. and Sweet, C. (1988) Lessons for human influenza from pathogenicity studies with ferrets. Review of Infectious Diseases 10, 56-75CrossRefGoogle ScholarPubMed
35Sweet, C. et al. (1979) The local origin of the febrile response induced in ferrets during respiratory infection with a virulent influenza virus. British Journal of Experimental Pathology 60, 300-308Google ScholarPubMed
36van Riel, D. et al. (2007) Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. American Journal of Pathology 171, 1215-1223CrossRefGoogle ScholarPubMed
37van Riel, D. et al. (2006) H5N1 Virus Attachment to Lower Respiratory Tract. Science 312, 399CrossRefGoogle ScholarPubMed
38Andrewes, C.H. and Glover, R.E. (1941) Spread of infection from the respiratory tract of the ferret. I. Transmission of influenza A virus. British Journal of Experimental Pathology 22, 91Google Scholar
39Herlocher, M.L. et al. (2001) Ferrets as a transmission model for influenza: sequence changes in HA1 of type A (H3N2) virus. Journal of Infectious Diseases 184, 542-546CrossRefGoogle ScholarPubMed
40Maines, T.R. et al. (2006) Lack of transmission of H5N1 avian–human reassortant influenza viruses in a ferret model. Proceedings of the National Academy of Sciences of the United States of America 103, 12121-12126CrossRefGoogle Scholar
41Tumpey, T.M. et al. (2007) A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315, 655-659CrossRefGoogle ScholarPubMed
42Squires, S. and Belyavin, G. (1975) Free contact infection in ferret groups. Journal of Antimicrobial Chemotherapy 1 (Supplement 4), 35-42CrossRefGoogle ScholarPubMed
43Yen, H.L. et al. (2007) Inefficient transmission of H5N1 influenza viruses in a ferret contact model. Journal of Virology 81, 6890-6898CrossRefGoogle Scholar
44Azoulay-Dupuis, E. et al. (1984) Lung alterations in guinea-pigs infected with influenza virus. Journal of Comparative Pathology 94, 273-283CrossRefGoogle ScholarPubMed
45Lowen, A.C. et al. (2006) The guinea pig as a transmission model for human influenza viruses. Proceedings of the National Academy of Sciences of the United States of America 103, 9988-9992CrossRefGoogle ScholarPubMed
46Wetherbee, R.E. (1973) Induction of systemic delayed hypersensitivity during experimental viral infection of the respiratory tract with a myxovirus or paramyxovirus. Journal of Immunology 111, 157-163CrossRefGoogle ScholarPubMed
47Lowen, A.C. and Palese, P. (2007) Influenza virus transmission: basic science and implications for the use of antiviral drugs during a pandemic. Infectious Disorders Drug Targets 7, 318-328CrossRefGoogle ScholarPubMed
48Van Hoeven, N. et al. (2009) Pathogenesis of 1918 pandemic and H5N1 influenza virus infections in a guinea pig model: antiviral potential of exogenous alpha interferon to reduce virus shedding. Journal of Virology 83, 2851-2861CrossRefGoogle Scholar
49Pastor, L.M. et al. (1992) Histochemical study of glycoconjugates in the nasal mucosa of the rat and guinea pig. Histochemical Journal 24, 727-736CrossRefGoogle ScholarPubMed
50Jarreau, P.H. et al. (1992) Effects of neuraminidase on airway reactivity in the guinea pig. American Review of Respiratory Disease 145(4 Pt 1), 906-910CrossRefGoogle ScholarPubMed
51Lowen, A.C. et al. (2007) Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathogens 3, 1470-1476CrossRefGoogle ScholarPubMed
52Schulman, J.L. and Kilbourne, E.D. (1962) Airborne transmission of influenza virus infection in mice. Nature 195, 1129-1130CrossRefGoogle ScholarPubMed
53Wu, R. et al. (2010) Transmission of avian H9N2 influenza viruses in a murine model. Veterinary Microbiology 142, 211-216CrossRefGoogle ScholarPubMed
54Schulman, J.L. and Kilbourne, E.D. (1963) Experimental transmission of influenza virus infection in mice. II. Some factors affecting the incidence of transmitted infection. Journal of Experimental Medicine 118, 267-275CrossRefGoogle ScholarPubMed
55Baskin, C.R. et al. (2009) Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proceedings of the National Academy of Sciences of the United States of America 106, 3455-3460CrossRefGoogle ScholarPubMed
56Garten, R.J. et al. (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325, 197-201CrossRefGoogle ScholarPubMed
57Myers, K.P., Olsen, C.W. and Gray, G.C. (2007) Cases of swine influenza in humans: a review of the literature. Clinical Infectious Diseases 44, 1084-1088CrossRefGoogle ScholarPubMed
58Shinde, V. et al. (2009) Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009. New England Journal of Medicine 360, 2616-2625CrossRefGoogle ScholarPubMed
59De Vleeschauwer, A. et al. (2009) Efficient transmission of swine-adapted but not wholly avian influenza viruses among pigs and from pigs to ferrets. Journal of Infectious Diseases 200, 1884-1892CrossRefGoogle Scholar
60Ma, W. et al. (2007) Identification of H2N3 influenza A viruses from swine in the United States. Proceedings of the National Academy of Sciences of the United States of America 104, 20949-20954CrossRefGoogle ScholarPubMed
61Maines, T.R. et al. (2009) Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science 325, 484-487CrossRefGoogle ScholarPubMed
62Munster, V.J. et al. (2009) Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets. Science 325, 481-483CrossRefGoogle ScholarPubMed
63Cauchemez, S. et al. (2009) Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States. New England Journal of Medicine 361, 2619-2627CrossRefGoogle ScholarPubMed
64Cowling, B.J. et al. (2010) Comparative epidemiology of pandemic and seasonal influenza A in households. New England Journal of Medicine 362, 2175-2184CrossRefGoogle ScholarPubMed
65Doyle, T.J. and Hopkins, R.S. (2010) Low secondary transmission of 2009 pandemic influenza A (H1N1) in households following an outbreak at a summer camp: relationship to timing of exposure. Epidemiology and Infection Jun 21; [Epub ahead of print]Google Scholar
66Leung, Y.H., Li, M.P. and Chuang, S.K. (2010) A school outbreak of pandemic (H1N1) 2009 infection: assessment of secondary household transmission and the protective role of oseltamivir. Epidemiology and Infection Jun 21; [Epub ahead of print]Google ScholarPubMed
67Herfst, S. et al. (2010) Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission. Journal of Virology 84, 3752-3758CrossRefGoogle ScholarPubMed
68Hoffmann, E. et al. (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of the National Academy of Sciences of the United States of America 97, 6108-6113CrossRefGoogle ScholarPubMed
69Fodor, E. et al. (1999) Rescue of influenza A virus from recombinant DNA. Journal of Virology 73, 9679-9682CrossRefGoogle ScholarPubMed
70Stelzer-Braid, S. et al. (2009) Exhalation of respiratory viruses by breathing, coughing, and talking. Journal of Medical Virology 81, 1674-1679CrossRefGoogle ScholarPubMed
71Nicas, M., Nazaroff, W.W. and Hubbard, A. (2005) Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. Journal of Occupational and Environmental Hygiene 2, 143-154CrossRefGoogle ScholarPubMed
72Hinds, W.C. (1999) Aerosol Technology (2nd edn), John Wiley & Sons, Inc., New YorkGoogle Scholar
73Verreault, D., Moineau, S. and Duchaine, C. (2008) Methods for sampling of airborne viruses. Microbiology and Molecular Biology Reviews 72, 413-444CrossRefGoogle ScholarPubMed
74Tellier, R. (2009) Aerosol transmission of influenza A virus: a review of new studies. Journal of the Royal Society, Interface 6 (Supplement 6), S783-S790CrossRefGoogle ScholarPubMed
75Xie, X. et al. (2007) How far droplets can move in indoor environments – revisiting the Wells evaporation-falling curve. Indoor Air 17, 211-225CrossRefGoogle ScholarPubMed
76Chen, S.C. et al. (2009) Viral kinetics and exhaled droplet size affect indoor transmission dynamics of influenza infection. Indoor Air 19, 401-413CrossRefGoogle ScholarPubMed
77Lowen, A. and Palese, P. (2009) Transmission of influenza virus in temperate zones is predominantly by aerosol, in the tropics by contact: a hypothesis. PLoS Currents: Influenza Aug 17; 1:RRN1002CrossRefGoogle ScholarPubMed
78Lowen, A.C. et al. (2008) High temperature (30 degrees C) blocks aerosol but not contact transmission of influenza virus. Journal of Virology 82, 5650-5652CrossRefGoogle Scholar
79Lofgren, E. et al. (2007) Influenza seasonality: underlying causes and modeling theories. Journal of Virology 81, 5429-5436CrossRefGoogle ScholarPubMed
80Polozov, I.V. et al. (2008) Progressive ordering with decreasing temperature of the phospholipids of influenza virus. Nature Chemical Biology 4, 248-255CrossRefGoogle ScholarPubMed
81Nguyen, H.L. et al. (2007) Epidemiology of influenza in Hanoi, Vietnam, from 2001 to 2003. Journal of Infection 55, 58-63CrossRefGoogle ScholarPubMed
82Wong, C.M. et al. (2004) Influenza-associated mortality in Hong Kong. Clinical Infectious Diseases 39, 1611-1617CrossRefGoogle ScholarPubMed
83Viboud, C. et al. (2004) Association of influenza epidemics with global climate variability. European Journal of Epidemiology 19, 1055-1059CrossRefGoogle ScholarPubMed
84Skehel, J.J. and Wiley, D.C. (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annual Review of Biochemistry 69, 531-569CrossRefGoogle ScholarPubMed
85Ito, T. and Kawaoka, Y. (2000) Host-range barrier of influenza A viruses. Veterinary Microbiology 74, 71-75CrossRefGoogle ScholarPubMed
86Rogers, G.N. and Paulson, J.C. (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127, 361-373CrossRefGoogle ScholarPubMed
87Matrosovich, M.N. et al. (2004) Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America 101, 4620-4624CrossRefGoogle ScholarPubMed
88Shinya, K. et al. (2006) Avian flu: influenza virus receptors in the human airway. Nature 440, 435-436CrossRefGoogle ScholarPubMed
89Belser, J.A. et al. (2008) Contemporary North American influenza H7 viruses possess human receptor specificity: implications for virus transmissibility. Proceedings of the National Academy of Sciences of the United States of America 105, 7558-7563CrossRefGoogle ScholarPubMed
90Stevens, J. et al. (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404-410CrossRefGoogle ScholarPubMed
91Thompson, C.I. et al. (2006) Infection of human airway epithelium by human and avian strains of influenza a virus. Journal of Virology 80, 8060-8068CrossRefGoogle ScholarPubMed
92Chandrasekaran, A. et al. (2008) Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nature Biotechnology 26, 107-113CrossRefGoogle ScholarPubMed
93Srinivasan, A. et al. (2008) Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses. Proceedings of the National Academy of Sciences of the United States of America 105, 2800-2805CrossRefGoogle ScholarPubMed
94Xu, R. et al. (2010) Structure, receptor binding, and antigenicity of influenza virus hemagglutinins from the 1957 H2N2 pandemic. Journal of Virology 84, 1715-1721CrossRefGoogle ScholarPubMed
95Liu, J. et al. (2009) Structures of receptor complexes formed by hemagglutinins from the Asian influenza pandemic of 1957. Proceedings of the National Academy of Sciences of the United States of America 106, 17175-17180CrossRefGoogle ScholarPubMed
96Glaser, L. et al. (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. Journal of Virology 79, 11533-11536CrossRefGoogle ScholarPubMed
97Gambaryan, A. et al. (2006) Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology 344, 432-438CrossRefGoogle ScholarPubMed
98Song, H. et al. (2009) Partial direct contact transmission in ferrets of a mallard H7N3 influenza virus with typical avian-like receptor specificity. Virology Journal 6, 126CrossRefGoogle ScholarPubMed
99Wan, H. et al. (2008) Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS One 3, e2923CrossRefGoogle ScholarPubMed
100Yang, Z.Y. et al. (2007) Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science 317, 825-828CrossRefGoogle ScholarPubMed
101Stevens, J. et al. (2008) Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. Journal of Molecular Biology 381, 1382-1394CrossRefGoogle ScholarPubMed
102Chutinimitkul, S. et al. (2010) Virulence-associated substitution D222G in hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. Journal of Virology 84, 11802-11813CrossRefGoogle ScholarPubMed
103Van Hoeven, N. et al. (2009) Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proceedings of the National Academy of Sciences of the United States of America 106, 3366-3371CrossRefGoogle ScholarPubMed
104Sorrell, E.M. et al. (2009) Minimal molecular constraints for respiratory droplet transmission of an avian–human H9N2 influenza A virus. Proceedings of the National Academy of Sciences of the United States of America 106, 7565-7570CrossRefGoogle ScholarPubMed
105Subbarao, E.K., London, W. and Murphy, B.R. (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. Journal of Virology 67, 1761-1764CrossRefGoogle ScholarPubMed
106Massin, P., van der Werf, S. and Naffakh, N. (2001) Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. Journal of Virology 75, 5398-5404CrossRefGoogle ScholarPubMed
107Hatta, M. et al. (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840-1842CrossRefGoogle ScholarPubMed
108Hatta, M. et al. (2007) Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathogens 3, 1374-1379CrossRefGoogle ScholarPubMed
109Steel, J. et al. (2009) Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathogens 5, e1000252CrossRefGoogle ScholarPubMed
110Li, Z. et al. (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. Journal of Virology 79, 12058-12064CrossRefGoogle Scholar
111Gabriel, G. et al. (2005) The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proceedings of the National Academy of Sciences of the United States of America 102, 18590-18595CrossRefGoogle ScholarPubMed
112Gao, Y. et al. (2009) Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathogens 5, e1000709CrossRefGoogle Scholar
113Leigh, M.W. et al. (1995) Receptor specificity of influenza virus influences severity of illness in ferrets. Vaccine 13, 1468-1473CrossRefGoogle ScholarPubMed
114Dinh, P.N. et al. (2006) Risk factors for human infection with avian influenza A H5N1, Vietnam, 2004. Emerging Infectious Diseases 12, 1841-1847CrossRefGoogle ScholarPubMed
115Normile, D. (2007) Epidemiology. Indonesia taps village wisdom to fight bird flu. Science 315, 30-33CrossRefGoogle ScholarPubMed
116Beigel, J.H. et al. (2005) Avian influenza A (H5N1) infection in humans. New England Journal of Medicine 353, 1374-1385Google ScholarPubMed
117Pitzer, V.E. et al. (2007) Little evidence for genetic susceptibility to influenza A (H5N1) from family clustering data. Emerging Infectious Diseases 13, 1074-1076CrossRefGoogle ScholarPubMed
118Albright, F.S. et al. (2008) Evidence for a heritable predisposition to death due to influenza. Journal of Infectious Diseases 197, 18-24CrossRefGoogle ScholarPubMed
119Ahmed, R., Oldstone, M.B. and Palese, P. (2007) Protective immunity and susceptibility to infectious diseases: lessons from the 1918 influenza pandemic. Nature Immunology 8, 1188-1193CrossRefGoogle ScholarPubMed
120Yuen, K.Y. et al. (1998) Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351, 467-471CrossRefGoogle ScholarPubMed
121Peiris, J.S. et al. (2004) Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363, 617-619CrossRefGoogle ScholarPubMed
122Cheung, C.Y. et al. (2002) Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 360, 1831-1837CrossRefGoogle ScholarPubMed
123de Jong, M.D. et al. (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Medicine 12, 1203-1207CrossRefGoogle ScholarPubMed
124Zhang, L. et al. (2009) Systems-based candidate genes for human response to influenza infection. Infection, Genetics and Evolution 9, 1148-1157CrossRefGoogle ScholarPubMed
125Trammell, R.A. and Toth, L.A. (2008) Genetic susceptibility and resistance to influenza infection and disease in humans and mice. Expert Review of Molecular Diagnostics 8, 515-529CrossRefGoogle ScholarPubMed
126Boon, A.C. et al. (2009) Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. Journal of Virology 83, 10417-10426CrossRefGoogle ScholarPubMed
127Germann, T.C. et al. (2006) Mitigation strategies for pandemic influenza in the United States. Proceedings of the National Academy of Sciences of the United States of America 103, 5935-5940CrossRefGoogle ScholarPubMed
128Park, A.W. et al. (2009) Quantifying the impact of immune escape on transmission dynamics of influenza. Science 326, 726-728CrossRefGoogle ScholarPubMed
129Bridges, C.B. et al. (2008) Inactivated influenza vaccines. In Vaccines (5th edn) (Plotkin, S.A., Orenstein, W.A. and Offit, P.A., eds), pp. 259-290, ElsevierCrossRefGoogle Scholar
130Belshe, R.B. et al. (2008) Influenza vaccine-live. In Vaccines (5th edn) (Plotkin, S.A., Orenstein, W.A. and Offit, P.A., eds), pp. 291-310, ElsevierCrossRefGoogle Scholar
131Piedra, P.A. et al. (2005) Herd immunity in adults against influenza-related illnesses with use of the trivalent-live attenuated influenza vaccine (CAIV-T) in children. Vaccine 23, 1540-1548CrossRefGoogle ScholarPubMed
132Glezen, W.P. (2006) Herd protection against influenza. Journal of Clinical Virology 37, 237-243CrossRefGoogle ScholarPubMed
133Potter, J. et al. (1997) Influenza vaccination of health care workers in long-term-care hospitals reduces the mortality of elderly patients. Journal of Infectious Diseases 175, 1-6CrossRefGoogle ScholarPubMed
134Carman, W.F. et al. (2000) Effects of influenza vaccination of health-care workers on mortality of elderly people in long-term care: a randomised controlled trial. Lancet 355, 93-97CrossRefGoogle ScholarPubMed
135Lowen, A.C. et al. (2009) Blocking interhost transmission of influenza virus by vaccination in the guinea pig model. Journal of Virology 83, 2803-2818CrossRefGoogle ScholarPubMed
136Longini, I.M. Jr., et al. (2004) Containing pandemic influenza with antiviral agents. American Journal of Epidemiology 159, 623-633CrossRefGoogle ScholarPubMed
137Pinto, L.H., Holsinger, L.J. and Lamb, R.A. (1992) Influenza virus M2 protein has ion channel activity. Cell 69, 517-528CrossRefGoogle ScholarPubMed
138Hay, A.J. et al. (1985) The molecular basis of the specific anti-influenza action of amantadine. EMBO Journal 4, 3021-3024CrossRefGoogle ScholarPubMed
139Simonsen, L. et al. (2007) The genesis and spread of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Molecular Biology and Evolution 24, 1811-1820CrossRefGoogle ScholarPubMed
140Herlocher, M.L. et al. (2003) Assessment of development of resistance to antivirals in the ferret model of influenza virus infection. Journal of Infectious Diseases 188, 1355-1361CrossRefGoogle ScholarPubMed
141Sweet, C. et al. (1991) Virulence of rimantadine-resistant human influenza A (H3N2) viruses in ferrets. Journal of Infectious Diseases 164, 969-972CrossRefGoogle ScholarPubMed
142Hayden, F.G. et al. (1989) Emergence and apparent transmission of rimantadine-resistant influenza A virus in families. New England Journal of Medicine 321, 1696-1702CrossRefGoogle ScholarPubMed
143Bright, R.A. et al. (2006) Adamantane resistance among influenza A viruses isolated early during the 2005-2006 influenza season in the United States. Journal of the American Medical Association 295, 891-894CrossRefGoogle ScholarPubMed
144von Itzstein, M. et al. (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363, 418-423CrossRefGoogle ScholarPubMed
145Gubareva, L.V., Kaiser, L. and Hayden, F.G. (2000) Influenza virus neuraminidase inhibitors. Lancet 355, 827-835CrossRefGoogle ScholarPubMed
146Carr, J. et al. (2002) Influenza virus carrying neuraminidase with reduced sensitivity to oseltamivir carboxylate has altered properties in vitro and is compromised for infectivity and replicative ability in vivo. Antiviral Research 54, 79-88CrossRefGoogle ScholarPubMed
147Ives, J.A. et al. (2002) The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely compromised both in vitro and in vivo. Antiviral Research 55, 307-317CrossRefGoogle ScholarPubMed
148Herlocher, M.L. et al. (2002) Influenza virus carrying an R292K mutation in the neuraminidase gene is not transmitted in ferrets. Antiviral Research 54, 99-111CrossRefGoogle Scholar
149Yen, H.L. et al. (2007) Neuraminidase inhibitor-resistant recombinant A/Vietnam/1203/04 (H5N1) influenza viruses retain their replication efficiency and pathogenicity in vitro and in vivo. Journal of Virology 81, 12418-12426CrossRefGoogle ScholarPubMed
150Herlocher, M.L. et al. (2004) Influenza viruses resistant to the antiviral drug oseltamivir: transmission studies in ferrets. Journal of Infectious Diseases 190, 1627-1630CrossRefGoogle Scholar
151Bouvier, N.M., Lowen, A.C. and Palese, P. (2008) Oseltamivir-resistant influenza A viruses are transmitted efficiently among guinea pigs by direct contact but not by aerosol. Journal of Virology 82, 10052-10058CrossRefGoogle Scholar
152Yen, H.L. et al. (2005) Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrobial Agents and Chemotherapy 49, 4075-4084CrossRefGoogle ScholarPubMed
153Patel, A. and Gorman, S.E. (2009) Stockpiling antiviral drugs for the next influenza pandemic. Clinical Pharmacology and Therapeutics 86, 241-243CrossRefGoogle ScholarPubMed
154Hayden, F.G. et al. (2004) Management of influenza in households: a prospective, randomized comparison of oseltamivir treatment with or without postexposure prophylaxis. Journal of Infectious Diseases 189, 440-449CrossRefGoogle ScholarPubMed
155Lee, V.J. et al. (2010) Oseltamivir ring prophylaxis for containment of 2009 H1N1 influenza outbreaks. New England Journal of Medicine 362, 2166-2174CrossRefGoogle ScholarPubMed
156Garcia-Sastre, A. and Biron, C.A. (2006) Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312, 879-882CrossRefGoogle ScholarPubMed
157Keam, S.J. and Cvetkovic, R.S. (2008) Peginterferon-alpha-2a (40 kD) plus ribavirin: a review of its use in the management of chronic hepatitis C mono-infection. Drugs 68, 1273-1317CrossRefGoogle ScholarPubMed
158Beilharz, M.W., Cummins, J.M. and Bennett, A.L. (2007) Protection from lethal influenza virus challenge by oral type 1 interferon. Biochemical and Biophysical Research Communications 355, 740-744CrossRefGoogle ScholarPubMed
159Kugel, D. et al. (2009) Intranasal administration of alpha interferon reduces seasonal influenza A virus morbidity in ferrets. Journal of Virology 83, 3843-3851CrossRefGoogle ScholarPubMed
160Tumpey, T.M. et al. (2007) The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses. Journal of Virology 81, 10818-10821CrossRefGoogle ScholarPubMed
161Steel, J. et al. (2010) Transmission of pandemic H1N1 influenza virus and impact of prior exposure to seasonal strains or interferon treatment. Journal of Virology 84, 21-26CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

Tellier, R. (2009) Aerosol transmission of influenza A virus: a review of new studies. Journal of the Royal Society, Interface 6 (Suppl. 6), S783S790CrossRefGoogle ScholarPubMed
Perdue, M.L. and Swayne, D.E. (2005). Public health risk from avian influenza viruses. Avian Diseases 49, 317327CrossRefGoogle ScholarPubMed
Brankston, G. et al. (2007). Transmission of influenza A in human beings. Lancet Infectious Diseases 7, 257265CrossRefGoogle ScholarPubMed
Belser, J.A. et al. (2009). Use of animal models to understand the pandemic potential of highly pathogenic avian influenza viruses. Advances in Virus Research 73, 5597CrossRefGoogle ScholarPubMed