Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T00:16:53.000Z Has data issue: false hasContentIssue false

CENTRES OF SYMMETRIC CELLULAR ALGEBRAS

Published online by Cambridge University Press:  14 September 2010

YANBO LI*
Affiliation:
Department of Information and Computing Sciences, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, PR China School of Mathematics Sciences, Beijing Normal University, Beijing, 100875, PR China (email: liyanbo707@163.com)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be an integral domain and A a symmetric cellular algebra over R with a cellular basis {CλS,Tλ∈Λ,S,TM(λ)}. We construct an ideal L(A) of the centre of A and prove that L(A) contains the so-called Higman ideal. When R is a field, we prove that the dimension of L(A) is not less than the number of nonisomorphic simple A-modules.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Brundan, J. and Stroppel, C., ‘Highest weight categories arising from Khovanov’s diagram algebra I: cellularity’, arXix: math0806.1532v1.Google Scholar
[2]Curtis, C. W. and Reiner, I., Representation Theory of Finite Groups and Associative Algebras (Interscience, New York, 1964).Google Scholar
[3]Dipper, R. and James, G., ‘Blocks and idempotents of Hecke algebras of general linear groups’, Proc. London Math. Soc. (3) 54 (1987), 5782.CrossRefGoogle Scholar
[4]Francis, A., ‘The minimal bases for the centre of an Iwahori–Hecke algebra’, J. Algebra 221 (1999), 128.CrossRefGoogle Scholar
[5]Francis, A., ‘Centralizers of Iwahori–Hecke algebras’, Trans. Amer. Math. Soc. (7) 353 (2001), 27252739.CrossRefGoogle Scholar
[6]Francis, A. and Graham, J. J., ‘Centres of Hecke algebras: the Dipper–James conjecture’, J. Algebra 306 (2006), 244267.CrossRefGoogle Scholar
[7]Francis, A. and Jones, L., ‘On bases of centres of Iwahori–Hecke algebras of the symmetric group’, J. Algebra 289 (2005), 4269.CrossRefGoogle Scholar
[8]Geck, M., ‘Hecke algebras of finite type are cellular’, Invent. Math. 169 (2007), 501517.CrossRefGoogle Scholar
[9]Geck, M. and Pfeiffer, G., Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, London Mathematical Society Monographs, New Series, 21 (Oxford University Press, New York, 2000).CrossRefGoogle Scholar
[10]Geck, M. and Rouquier, R., ‘Centers and simple modules for Iwahori–Hecke algebras’, in: Finite Reductive Groups, Luminy, 1994 (Birkhäuser, Boston, MA, 1997), pp. 251272.Google Scholar
[11]Graham, J. J. and Lehrer, G. I., ‘Cellular algebras’, Invent. Math. 123 (1996), 134.CrossRefGoogle Scholar
[12]Jeong, Y.-K., Lee, I.-S., Oh, H. and Park, K.-H., ‘Cellular algebras and centers of Hecke algebras’, Bull. Korean Math. Soc. 39 (2002), 7179.CrossRefGoogle Scholar
[13]Jones, L., ‘Centers of generic Hecke algebras’, Trans. Amer. Math. Soc. 317 (1990), 361392.CrossRefGoogle Scholar
[14]Li, Y. B., ‘Radicals of symmetric cellular algebras’, Preprint, arXiv: math.RT/0911.3524v1.Google Scholar
[15]Malle, G. and Mathas, A., ‘Symmetric cyclotomic Hecke algebras’, J. Algebra 205 (1998), 275293.CrossRefGoogle Scholar
[16]Rui, H. B. and Xi, C. C., ‘The representation theory of cyclotomic Temperley–Lieb algebras’, Comment. Math. Helv. 79 (2004), 427450.CrossRefGoogle Scholar
[17]Xi, C. C., ‘Partition algebras are cellular’, Compositio Math. 119 (1999), 99109.CrossRefGoogle Scholar
[18]Xi, C. C., ‘On the quasi-heredity of Birman–Wenzl algebras’, Adv. Math. 154 (2000), 280298.CrossRefGoogle Scholar