Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T15:50:32.942Z Has data issue: false hasContentIssue false

Follow the methane: the search for a deep biosphere, and the case for sampling serpentinites, on Mars

Published online by Cambridge University Press:  20 July 2010

John Parnell*
Affiliation:
Department of Geology, University of Aberdeen, Aberdeen AB24 3UE, UK
Adrian J. Boyce
Affiliation:
Scottish Universities Environmental Research Centre, East Kilbride, Glasgow G75 0QF, UK
Nigel J.F. Blamey
Affiliation:
Department of Earth and Environmental Science, New Mexico Tech, Socorro, NM 87801, USA

Abstract

If life occurs elsewhere in the Solar System, there is a strong likelihood that it occurs in a deep biosphere beneath the planetary surface. The evidence for methane in the martian atmosphere has drawn attention to the possible role of serpentinites in fuelling a deep biosphere through the generation of hydrogen and/or methane. Serpentinites represent a good target for the search for biosignatures in a range of reaction products. Isotopic measurements in each of methane, sulphide and carbonate in serpentinites can help determine evidence of biological activity. We show that ancient terrestrial serpentinites retain methane that could be subject to the measurement of carbon and hydrogen isotopes. There is, therefore, potential to sample serpentinites on Mars and test for evidence of life in the deep geological record of Mars.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrajano, T.A., Sturchio, N.C., Bohlke, J.K., Lyon, G.L., Poreda, R.J. & Stevens, C.M. (1988). Chem. Geol. 71, 211222.CrossRefGoogle Scholar
Alt, J.C., Davidson, G.J., Teagle, D.A.H. & Karson, J.A. (2003). Geology 31, 549552.2.0.CO;2>CrossRefGoogle Scholar
Alt, J.C. & Shanks, W.C. (1998). J. Geophys. Res. 103, B9917B9929.CrossRefGoogle Scholar
Alt, J.C. & Shanks, W.C. (2006). Earth Planet. Sci. Lett. 242, 272285.CrossRefGoogle Scholar
Alt, J.C., Shanks, W.C., Bach, W., Paulick, H., Garrido, C.J. & Beaudoin, G. (2007). Geochem. Geophys. Geosyst. 8, doi:10.1029/2007GC001617.CrossRefGoogle Scholar
Atreya, S.K., Mahaffy, P.R. & Wong, A.S. (2007). Planet. Space Sci. 55, 358369.CrossRefGoogle Scholar
Banin, A., Clark, B.C. & Waenke, H. (1992). Surface chemistry and mineralogy. In Mars, pp. 594625. University of Arizona Press, Tucson, AZ.Google Scholar
Bekker, A., Holland, H.D., Wang, P.L., Rumble, D., Stein, H.J., Hannah, J.L., Coetzee, L.L. & Beukes, N.J. (2004). Nature 427, 117120.CrossRefGoogle Scholar
Bernard, B.B., Brooks, J.M. & Sackett, W.M. (1978). J. Geophys. Res. 83, 40534061.CrossRefGoogle Scholar
Blank, J.G., Green, S.J., Blake, D., Valley, J.W., Kita, N.T., Treiman, A. & Dobson, P.F. (2009). Planet. Space Sci. 57, 533540.CrossRefGoogle Scholar
Bluck, B.J., Halliday, A.N., Aftalion, M. & Macintyre, R.M. (1980). Geology 8, 492495.2.0.CO;2>CrossRefGoogle Scholar
Canfield, D.E. (2004). Am. J. Sci. 304, 839861.CrossRefGoogle Scholar
Cardace, D. & Hoehler, T.M. (2009). Northeast. Nat. 16, 272284.CrossRefGoogle Scholar
Chapelle, F.H., O'Neill, K., Bradley, P.M., Methé, B.A., Ciufo, S.A., Knobel, L.L. & Lovley, D.R. (2002). Nature 415, 312315.CrossRefGoogle Scholar
Christensen, L.E., Brunner, B., Truong, K.N., Mielke, R.E., Webster, C.R. & Coleman, M. (2007). Anal. Chem. 79, 92619268.CrossRefGoogle Scholar
Da Costa, I.R., Barriga, F.J.A.S. & Taylor, R.N. (2008). Eur. J. Mineral. 20, 173181.CrossRefGoogle Scholar
Delacour, A., Früh-Green, G.L., Bernasconi, S.M. & Kelley, D.S. (2008). Geochim. Cosmochim. Acta 72, 50905110.CrossRefGoogle Scholar
Ehlmann, B.L. et al. (2009). J. Geophys. Res. 114, doi:10.1029/2009JE003339.Google Scholar
Farrell, L.L., McGary, R.S. & Sparks, D.W. (2007). Thermal history and differentiation of ice/rock planetesimals. In Proc. Lunar and Planetary Science Conf. XXXVIII, abstract 1827.Google Scholar
Fettes, D.J., Mendum, J.R., Smith, D.I. & Watson, J.V. (1992). Geology of the Outer Hebrides. Memoir of the British Geological Survey, Sheets Lewis and Harris, Uist and Barra (Scotland).Google Scholar
Field, C.W., Dymond, J.R., Heath, G.R., Corliss, J.B. & Dasch, E.J. (1976). Initial Rep. DSDP 34, 381384.Google Scholar
Fisk, M.R. and Giovannoni, S.J. (1999). J. Geophys. Res. 104, 11 80511 815.CrossRefGoogle Scholar
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. (2004). Science 306, 17581761.CrossRefGoogle Scholar
Franz, H.B., Mahaffy, P.R. & Farquhar, J. (2007). Preliminary estimate of sulfur isotope ratio precision expected with the sample analysis at Mars (SAM) instrument suite of the 2009 Mars Science Laboratory. In Proc. Lunar and Planetary Science Conf. XXXVIII, abstract 1874.Google Scholar
Hamilton, V.E. & Christensen, P.R. (2005). Geology 33, 433436.CrossRefGoogle Scholar
Haveman, S.A., Pedersen, K. & Ruotsalainen, P. (1999). Geomicrobiol. J. 16, 277294.Google Scholar
Hellevang, H. (2008). Int. J. Astrobiol. 7, 157167.CrossRefGoogle Scholar
Hoefen, T.M., Clark, R.N., Bandfield, J.L., Smith, M.D., Pearl, J.C. & Christensen, P.R. (2003). Science 302, 627630.CrossRefGoogle Scholar
Iyer, K., Jamtveit, B., Mathiesen, J., Malthe-Sorenssen, A. & Feder, J. (2008). Earth Planet. Sci. Lett. 267, 503516.CrossRefGoogle Scholar
Johnston, D.T., Wing, B.A., Farquhar, J., Kaufman, A.J., Strauss, H., Lyons, T.W., Kah, L.C. & Canfield, D.E. (2005). Science 310, 14771479.CrossRefGoogle Scholar
Jørgensen, B.B. & Boetius, A. (2007). Nat. Rev. Microbiol. 5, 770781.CrossRefGoogle Scholar
Kelemen, P.B. & Matter, J. (2008). Proc. Nat. Acad. Sci. U.S.A. 105, 17 29517 300.CrossRefGoogle Scholar
Kelley, D.S. et al. (2005). A serpentinite-hosted ecosystem: The Lost City hydrothermal field. Science 307, 14281434.CrossRefGoogle ScholarPubMed
Klein, F., Bach, W., Jöns, N., McCollum, T., Moskowitz, B. & Berquó, T. (2009). Geochim. Cosmochim. Acta 73, 68686893.CrossRefGoogle Scholar
Komor, S.C. & Mottl, M.J. (2005). Data Report: Stable isotope compositions of dissolved inorganic carbon, methane, sulfate and sulphide in pore water from the South Chamorro serpentinite mud volcano, Mariana subduction complex. In Proc. Ocean Drilling Program, Scientific Results, ed. Shinohara, M., Salisbury, M.H. & Richter, C., vol. 195.Google Scholar
Krouse, H.R., Brown, H.M. & Farquharson, R.B. (1977). Can. J. Earth Sci. 14, 787793.CrossRefGoogle Scholar
Lavoie, D. (1997). J. Sediment. Res. 67, 4753.Google Scholar
Livingstone, A. (1976). Mineral. Mag. 40, 493499.CrossRefGoogle Scholar
McCollum, T.M. (2007). Astrobiology 7, 933950.CrossRefGoogle Scholar
McCollum, T.M. & Bach, W. (2009). Geochim. Cosmochim. Acta 73, 856875.CrossRefGoogle Scholar
McKay, C.P., Porco, C.C., Altheide, T., Davis, W.L. & Kral, T.A. (2008). Astrobiology 8, 909917.CrossRefGoogle Scholar
Milliken, R.E. & Rivkin, A.S. (2009). Nat. Geosci. 2, 258261.CrossRefGoogle Scholar
Monroe, J.S. & Wicander, R. (1994). The Changing Earth: Exploring Geology and Evolution. West Publishing Company, St. Paul.Google Scholar
Moore, J.N., Norman, D.I. & Kennedy, B.M. (2001). Chem. Geol. 173, 330.CrossRefGoogle Scholar
Mottl, M.J., Komor, S.C., Fryer, P. & Moyer, C.L. (2003). Geochem. Geophys. Geosyst. 4, doi:10.1029/2003GC000588.CrossRefGoogle Scholar
Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., Disanti, M.A., Mandell, A.V. & Smith, M.D. (2009). Science 323, 10411045.CrossRefGoogle Scholar
Mustard, J.F., Ehlmann, B.L., Murchie, S.L., Poulet, F., Mangold, N., Head, J.W., Bibring, J.P. & Roach, L.H. (2009). J. Geophys. Res. 114, doi: 10.1029/2009JE003349.Google Scholar
Norman, D.I. & Blamey, N.J.F. (2001). Quantitative analysis of fluid inclusion volatiles by a two quadrupole mass spectrometer system. In ECROFI (European Current Research on Fluid Inclusions) XVI, pp. 341344.Google Scholar
Norman, D.I. & Moore, J.N. (1997). Gaseous species in fluid inclusions: a fluid tracer and indicator of fluid processes. In ECROFI (European Current Research on Fluid Inclusions) XIV, pp. 243244.Google Scholar
Onstott, T.C., McGown, D., Kessler, J., Sherwood-Lollar, B., Lehmann, K.K. & Clifford, S.M. (2006). Astrobiology 6, 377395.CrossRefGoogle Scholar
Oze, C. & Sharma, M. (2005). Geophys. Res. Lett. 32, L10203.CrossRefGoogle Scholar
Oze, C. & Sharma, M. (2007). Icarus 186, 557561.CrossRefGoogle Scholar
Parkes, R.J. et al. (2005). Nature 436, 390394.CrossRefGoogle Scholar
Parkes, R.J. & Wellsbury, P. (2004). Deep biospheres. In Microbial Diversity and Bioprospecting, ed. Bull, A.T., pp. 120129. ASM Press, Washington, DC.Google Scholar
Parnell, J. et al. (2007). Astrobiology 7, 578604.CrossRefGoogle Scholar
Parnell, J. et al. (2010). Geology 38, 271274.CrossRefGoogle Scholar
Proskurowski, G., Lilley, M.D., Seewald, J.S., Früh-Green, G.L., Olson, E.J., Lupton, J.E., Sylva, S.P. & Kelley, D.S. (2008). Science 319, 604607.CrossRefGoogle Scholar
Puchelt, H., Prichard, H.M., Berner, Z. & Maynard, J. (1996). Sulfide mineralogy, sulfur content, and sulfur isotope composition of mafic and ultramafic rocks from Leg 147. In Proc. of the Ocean Drilling Program, Scientific Results, vol. 147, pp. 91–101. Ocean Drilling Program, College Station, Texas.Google Scholar
Quesnel, Y., Sotin, C., Langlais, B., Costin, S., Mandea, M., Gottschalk, M. & Dyment, J. (2009). Earth Planet. Sci. Lett. 277, 184193.CrossRefGoogle Scholar
Rouxel, O., Ono, S., Alt, J., Rumble, D. & Ludden, J. (2008). Earth Planet. Sci. Lett. 268, 110123.CrossRefGoogle Scholar
Schoell, M. (1983). Am. Assoc. Petrol. Geol. Bull. 67, 22252238.Google Scholar
Schulte, M., Blake, D., Hoehler, T. & McCollum, T. (2006). Astrobiology 6, 364376.CrossRefGoogle Scholar
Schwenzer, S.P. & Kring, D.A. (2009). Geology 37, 10911094.CrossRefGoogle Scholar
Sherwood-Lollar, B., Lacrampe-Couloume, G., Slater, G.F., Ward, J., Moser, D.P., Gihring, T.M., Lin, L.H. & Onstott, T.C. (2006). Chem. Geol. 226, 328339.CrossRefGoogle Scholar
Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G. & Bird, D.K. (2004). Proc. Nat. Acad. Sci. U.S.A. 101, 12 81812 823.CrossRefGoogle Scholar
Vago, J., Gardini, B., Kminek, G., Baglioni, P., Gianfiglio, G., Santovincenzo, A., Bayon, S. & van Winnendael, M. (2006). Eur. Space Agency Bull. 126, 1723.Google Scholar
Vance, S. (2009). Mars analog tunable laser spectroscopy at a site of active serpentinization. In Proc. 40 thLunar and Planetary Science Conf., abstract 2005.Google Scholar
Weeks, S.J., Currie, B., Bakun, A. & Peard, K.R. (2004). Deep Sea Res. Part I 51, 153172.CrossRefGoogle Scholar
Whitman, W.B., Coleman, D.C. & Wiebe, W.J. (1998). Proc. Nat. Acad. Sci. U.S.A. 95, 65786583.CrossRefGoogle Scholar
Yamanaka, T., Mizota, C., Satake, H., Kouzuma, F., Gamo, T., Tsunogai, U., Miwa, T. & Fujioka, K. (2003). Geomicrobiol. J. 20, 185197.CrossRefGoogle Scholar
Yoshida, N. & Fujiura, N. (2009). Astrobiology 9, 289295.CrossRefGoogle Scholar