Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T08:08:36.166Z Has data issue: false hasContentIssue false

Thermochemolysis of the Murchison meteorite: identification of oxygen bound and occluded units in the organic macromolecule

Published online by Cambridge University Press:  12 July 2010

Jonathan S. Watson*
Affiliation:
Planetary and Space Sciences Research Institute, The Open University, Milton Keynes, Buckinghamshire, MK7 6AA, UK
Mark A. Sephton
Affiliation:
Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College, London, SW7 2AZ, UK
Iain Gilmour
Affiliation:
Planetary and Space Sciences Research Institute, The Open University, Milton Keynes, Buckinghamshire, MK7 6AA, UK

Abstract

An organic macromolecular residue, prepared from the Murchison meteorite by treatment with hydrofluoric and hydrochloric acids, was subjected to online thermochemolysis with tetramethylammonium hydroxide (TMAH). The most abundant compound released by thermochemolysis was benzoic acid. Other abundant compounds include methyl and dimethyl benzoic acids as well as methoxy benzoic acids. Short chain dicarboxylic acids (C4–8) were also released from the organic macromolecule. Within the C1 and C2 benzoic acids all possible structural isomers are present reflecting the abiotic origin of these units. The most abundant isomers include 3,4-dimethylbenzoic acid (DMBA), 3,5-DMBA, 2,6-DMBA and phenylacetic acid. Thermochemolysis also liberates hydrocarbons that are not observed during thermal desorption; these compounds include naphthalene, methylnaphthalenes, biphenyl, methylbiphenyls, acenaphthylene, acenaphthene, phenanthrene, anthracene, fluoranthene and pyrene. The lack of oxygen containing functional groups in these hydrocarbons indicates that they represent non-covalently bound, occluded molecules within the organic framework. This data provides a valuable insight into oxygen bound and physically occluded moieties in the Murchison organic macromolecule and implies a relative order of synthesis or agglomeration for the detected organic constituents.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M.C., Moore, J.N., Fabry, L. & Ahn, A.H. (1992). Geothermics 21, 323339.CrossRefGoogle Scholar
Anders, E. & Kerridge, J.F. (1988). Meteorites and the Early Solar System, ed. Kerridge, J.F. & Matthews, M.S., pp. 11491154. University of Arizona Press.Google Scholar
Bandurski, E.L. & Nagy, B. (1976). Geochim. Cosmochim. Acta 40, 13971406.CrossRefGoogle Scholar
Bernstein, M.P., Ashbourn, S.F.M., Sandford, S.A. & Allamandola, L.J. (2004). Astrophys. J. 601, 365370.CrossRefGoogle Scholar
Bernstein, M.P., Elsila, J.E., Dworkkin, J.P., Sandford, S.A., Allamandola, L.J. & Zare, R.N. (2002). Astrophys. J. 576, 11151120.CrossRefGoogle Scholar
Biemann, K. (1974). Origins of Life 5, 417430.CrossRefGoogle Scholar
Busemann, H., Alexander, C.M.O. & Nittler, L.R. (2007). Meteor. Planet. Sci. 42, 13871416.CrossRefGoogle Scholar
Challinor, J.M. (2001). J. Analyt. Appl. Pyrolysis 61, 334.CrossRefGoogle Scholar
Cody, G.D., Alexander, C.M.O. & Tera, F. (2002). Geochim. Cosmochim. Acta 66, 18511865.CrossRefGoogle Scholar
Court, R.W., Sephton, M.A., Parnell, J. & Gilmour, I. (2006). Geochim. Cosmochim. Acta 70, 10201039.CrossRefGoogle Scholar
Cronin, J.R., Pizzarello, S. & Fyre, J.S. (1987). Geochim. Cosmochim. Acta 51, 229303.CrossRefGoogle Scholar
Gardinier, A., Derenne, S., Robert, F., Behar, F., Largeau, C. & Maquet, J. (2000). Earth Planet. Sci. Lett. 184, 9–21.CrossRefGoogle Scholar
Hayatsu, R., Matsuoka, S., Scott, R.G., Studier, M.H. & Anders, E. (1977). Geochim. Cosmochim. Acta 41, 13251339.CrossRefGoogle Scholar
Hayatsu, R., Winans, R.E., Scott, R.G., McBeth, R.L., Moore, L.P. & Studier, M.H. (1980). Science 207, 12021204.CrossRefGoogle Scholar
Holzer, G. & Oró, J. (1977). Organic Geochem. 1, 3752.CrossRefGoogle Scholar
Huang, Y., Wang, Y., Alexandre, M.R., Lee, T., Rose–Petruck, C., Fuller, M. & Pizzarello, S. (2005). Geochim. Cosmochim. Acta 69, 10731084.CrossRefGoogle Scholar
Kitajima, F., Nakamura, T., Takaoka, N. & Murae, T. (2002). Geochim. Cosmochim. Acta 66, 163172.CrossRefGoogle Scholar
Komiya, M. & Shimoyama, A. (1996). Bull. Chem. Soc. Japan 69, 5358.CrossRefGoogle Scholar
Krishnamurthy, R.V., Epstein, S., Cronin, J.R., Pizzarello, S. & Yuen, G.U. (1992). Geochim. Cosmochim. Acta 56, 40454058.CrossRefGoogle Scholar
Levy, R.L., Grayson, M.A. & Wolf, C.J. (1973). Geochim. Cosmochim. Acta 37, 467483.CrossRefGoogle Scholar
Martins, Z., Watson, J.S., Sephton, M.A., Botta, O., Ehrenfreund, P. & Gilmour, I. (2006). Meteor. Planet. Sci. 41, 10731080.CrossRefGoogle Scholar
Martinez, M. & Escobar, M. (1995). Organic Geochem. 23, 253261.CrossRefGoogle Scholar
Mehringer, D.M., Snyder, L.E. & Mioa, Y. (1997). Astrophys. J. 480, L71L74.CrossRefGoogle Scholar
Murae, T. (1995). J. Analyt. Appl. Pyrolysis 32, 6573.CrossRefGoogle Scholar
Naraoka, H., Shimoyama, A. & Harada, K. (1999). Origin Life Evol. Biosphere 29, 187201.CrossRefGoogle Scholar
Remusat, L., Derenne, S. & Robert, F. (2005a). Geochim. Cosmochim. Acta 69, 43774386.CrossRefGoogle Scholar
Remusat, L., Derenne, S., Robert, F. & Knicker, H. (2005b). Geochim. Cosmochim. Acta 69, 39193932.CrossRefGoogle Scholar
Remusat, L., Guan, Y., Wang, Y. & Eiler, J.M. (2010). Astrophys. J. 713, 10481058.CrossRefGoogle Scholar
Sephton, M.A. (2002). Natural Product Reports 19, 292311.CrossRefGoogle Scholar
Sephton, M.A. & Gilmour, I. (2000). Impacts and the Early Earth (Lecture Notes in Earth Sciences, 91), ed. Gilmour, I. & Koberl, C., pp. 2750. Springer, New York.CrossRefGoogle Scholar
Sephton, M.A., Pillinger, C.T. & Gilmour, I. (1998). Geochim. Cosmochim. Acta 62, 18211828.CrossRefGoogle Scholar
Sephton, M.A., Love, G.D., Watson, J.S., Verchovsky, A.B., Wright, I.P., Snape, C.E. & Gilmour, I. (2004). Geochim. Cosmochim. Acta 68, 13851393.CrossRefGoogle Scholar
Sephton, M.A., Pillinger, C.T. & Gilmour, I. (2000). Geochim. Cosmochim. Acta 64, 321328.CrossRefGoogle Scholar
Simmonds, P.G., Shulman, G.P. & Stembridge, C.H. (1969). J. Chromatogr. Sci. 7, 3641.CrossRefGoogle Scholar
Studier, M.H., Hayatsu, R. & Anders, E. (1972). Geochim. Cosmochim. Acta 36, 189215.CrossRefGoogle Scholar
Wootten, A., Wlodarczak, G., Mangum, J.G., Combes, F., Encrenaz, P.J. & Gerin, M. (1992). Astron. Astrophys. 257, 740744.Google Scholar
Yuen, G.U. & Kvenvolden, K.A. (1973). Nature 246, 301302.CrossRefGoogle Scholar
Zinner, E. (1988). Interstellar cloud material in meteorites. In Meteorites and the Early Solar System, ed. Kerridge, J.F. & Matthews, M.S., pp. 956983. University of Arizona Press.Google Scholar