Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T20:20:43.733Z Has data issue: false hasContentIssue false

RF wave visions for circuit analyses and diagnoses by live electrooptic imaging camera

Published online by Cambridge University Press:  01 July 2010

Masahiro Tsuchiya*
Affiliation:
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan.
Takahiro Shiozawa
Affiliation:
Kagawa National College of Technology, 551 Kohda, Takuma, Mitoyo, Kagawa 769-1192, Japan.
*
Corresponding author: M. Tsuchiya Email: mtsu@nict.go.jp

Abstract

A novel scheme involving experimental analyses and diagnoses is presented for monitoring radio-frequency (RF) and high-speed circuits. A live electrooptic imaging (LEI) camera is used in the scheme and it provides real-time images of the phase evolution of the RF electric field. Besides, it is demonstrated that essential properties of RF wave propagation are easily grasped from visual images; examples of LEI movies and images from which such essential properties can be identified are presented. The subjects of the LEI observations, analyses, and diagnoses are planar RF circuits and a Gbps-class emitter-coupled-logic circuit. In addition, the results of analyses and diagnoses in the space domain are discussed.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Yang, K.; David, G.; Took, J.-G.; Papapolymerou, I.; Katehi, L.P.B.; Whitaker, J.F.: Electrooptic mapping and finite-element modeling of the near-filed pattern of a microstrip patch antenna. IEEE Trans. Microw. Theory Tech., 48 (2000), 288293.CrossRefGoogle Scholar
[2]Yamazaki, E.; Wakana, S.; Park, H.; Kishi, M.; Tsuchiya, M.: High-frequency magneto-optic probe based on BiRIG rotation magnetization. IEICE Trans. Electron., E86-C (2003), 13381344.Google Scholar
[3]Sasagawa, K.; Kanno, A.; Kawanishi, T.; Tsuchiya, M.: Live electro-optic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields. IEEE Trans. Microw. Theory Tech., 55 (2007), 27822791.CrossRefGoogle Scholar
[4]Sasagawa, K.; Kanno, A.; Kawanishi, T.; Tsuchiya, M.: Live electro-optic imaging of microwave near-fields via ultra-parallel photonic heterodyne, in Proc. Int. Microw. Symp. 2007 (IMS2007), Honolulu, USA, 3–8 June 2007, 401404.Google Scholar
[5]Sasagawa, K.; Tsuchiya, M.: Real-time monitoring system of RF near-field distribution images on the basis of 64-channel parallel electro-optic data acquisition. IEICE Electron. Express, 2 (2005), 600606.CrossRefGoogle Scholar
[6]Sasagawa, K.; Kanno, A.; Tsuchiya, M.: Real-time digital signal processing for live electro-optic imaging. Opt. Express, 17 (2009), 1564115651.CrossRefGoogle ScholarPubMed
[7]Tsuchiya, M.; Kanno, A.; Sasagawa, K.; Shiozawa, T.: Image and/or movie analyses of 100-GHz traveling waves on the basis of real-time observation with a live electrooptic imaging camera. IEEE Trans. Microw. Theory Tech., 57 (2009), 33733379.CrossRefGoogle Scholar
[8]Tsuchiya, M.; Kanno, A.; Sasagawa, K.; Shiozawa, T.: Phase-evolving real-time visualization of 100 GHz travelling waves, in Proc. Int. Microw. Symp. 2009 (IMS2009), Boston, USA, June 7–12, 2009, 16731676.Google Scholar
[9]Kanno, A.; Sasagawa, K.; Tsuchiya, M.: Phase-resolved visualization of 100 GHz travelling electromagnetic waves by an EO imaging method, in Proc. LEOS 2008 Annual Meeting, Newport Beach, USA, November 9–13, 2008, 218219.CrossRefGoogle Scholar
[10]Kanno, A.; Sasagawa, K.; Tsuchiya, M.: W-band live electro-optic imaging system, in Proc. 38th European Microwave Conf. (EuMC2008), Amsterdam, The Netherlands, October 27–31, 2008, 369372.CrossRefGoogle Scholar
[11]Valdmanis, J.A.; Mourou, G.; Gabel, C.W.: Picosecond electro-optic sampling system. Appl. Phys. Lett., 41 (1982), 211212.CrossRefGoogle Scholar
[12]Valdmanis, J.A.; Mourou, G.: Subpicosecond electrooptic sampling: Principles and applications. IEEE J. Quantum Electron., QE-22 (1986), 6978.CrossRefGoogle Scholar
[13]Nagatsuma, T.; Shinagawa, M.; Sahri, N.; Sasaki, A.; Royter, Y.; Hirata, A.: 1.55-µm photonic systems for microwave and millimetre-wave measurement. IEEE Trans. Microw. Theory Tech., 49 (2001), 18311839.CrossRefGoogle Scholar
[14]Pockels, F.: Lehrbuch der Kristalloptik, Leipzig: Teubner, 1906.Google Scholar
[15]Kaminow, I.P.; Turner, R.H.: Electrooptic light modulators. Proc. IEEE, 54 (1966), 13741390.CrossRefGoogle Scholar
[16]Sasagawa, K.; Kanno, A.; Tsuchiya, M.: Real-time digital signal processing for live electro-optic imaging. Opt. Express 17 (2009), 1564115651.CrossRefGoogle ScholarPubMed
[17]Tsuchiya, M.; Sasagawa, K.; Shiozawa, T.: Real-time observations and analyses of RF wave propagations by live electrooptic imaging camera, in Proc. European Microwave Conf., Roma, Italy, September 28–October 3, 2009, 787790.CrossRefGoogle Scholar
[23]Tsuchiya, M.; Shiozawa, T.: Visual observation of internal signal transmissions in a millimeter-wave amplifier module. Accepted for presentation in European Microwave Conf., Paris, France, September 26–October 1, 2010.Google Scholar