Hostname: page-component-6b989bf9dc-lb7rp Total loading time: 0 Render date: 2024-04-15T01:09:21.169Z Has data issue: false hasContentIssue false

Spatial analysis of Leishmania donovani exposure in humans and domestic animals in a recent kala azar focus in Nepal

Published online by Cambridge University Press:  12 May 2010

BASUDHA KHANAL
Affiliation:
B.P. Koirala Institute of Health Sciences, Dharan, Nepal
ALBERT PICADO
Affiliation:
Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, LondonWC1E7HT, UK
NARAYAN RAJ BHATTARAI
Affiliation:
B.P. Koirala Institute of Health Sciences, Dharan, Nepal Department Molecular Parasitology, Institute of Tropical Medicine Antwerp, B-2000Antwerpen, Belgium Department of Biomedical Sciences, University of Antwerp, AntwerpenB-2080, Belgium
GERT VAN DER AUWERA
Affiliation:
Department Molecular Parasitology, Institute of Tropical Medicine Antwerp, B-2000Antwerpen, Belgium
MURARI LAL DAS
Affiliation:
B.P. Koirala Institute of Health Sciences, Dharan, Nepal
BART OSTYN
Affiliation:
Department of Public Health, Institute of Tropical Medicine, Antwerp, B-2000Antwerpen, Belgium
CLIVE RICHARD DAVIES
Affiliation:
Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, LondonWC1E7HT, UK
MARLEEN BOELAERT
Affiliation:
Department of Public Health, Institute of Tropical Medicine, Antwerp, B-2000Antwerpen, Belgium
JEAN-CLAUDE DUJARDIN*
Affiliation:
Department Molecular Parasitology, Institute of Tropical Medicine Antwerp, B-2000Antwerpen, Belgium Department of Biomedical Sciences, University of Antwerp, AntwerpenB-2080, Belgium
SUMAN RIJAL
Affiliation:
B.P. Koirala Institute of Health Sciences, Dharan, Nepal
*
*Corresponding author: Department Molecular Parasitology, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000Antwerpen, Belgium. Tel: +3232476355. Fax: +3232476359. E-mail: jcdujardin@itg.be

Summary

Visceral leishmaniasis (VL) is a major public health problem in the Indian subcontinent where the Leishmania donovani transmission cycle is described as anthroponotic. However, the role of animals (in particular domestic animals) in the persistence and expansion of VL is still a matter of debate. We combined Direct Agglutination Test (DAT) results in humans and domestic animals with Geographic Information System technology (i.e. extraction maps and scan statistic) to evaluate the exposure to L. donovani on these 2 populations in a recent VL focus in Nepal. A Poisson regression model was used to assess the risk of infection in humans associated with, among other factors, the proportion of DAT-positive animals in the proximities of the household. The serological results showed that both humans and domestic animals were exposed to L. donovani. DAT-positive animals and humans were spatially clustered. The presence of serologically positive goats (IRR=9·71), past VL cases (IRR=2·62) and the proximity to a forest island dividing the study area (IRR=3·67) increased the risk of being DAT-positive in humans. Even if they are not a reservoir, domestic animals, and specially goats, may play a role in the distribution of L. donovani, in particular in this new VL focus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alam, M., Khan, G. M., Ghosh, D., Mondal, D., Jamlil, K. M. and Haque, R. (2009). A pilot study to investigate animal reservoir of Kala-azar – are cattle a reservoir for Kala-azar in Bangladesh?, Fourth World Congress on Leishmaniasis, Lucknow, India, p. 269.Google Scholar
Baddeley, A. and Turner, R. (2005). Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software 12, 142.CrossRefGoogle Scholar
Bailey, T. C. and Gatrell, A. C. (1995). Interactive Spatial Data Analysis. John Wiley & Sons, New York, USA.Google Scholar
Bern, C., Joshi, A. B., Jha, S. N., Das, M. L., Hightower, A., Thakur, G. D. and Bista, M. B. (2000). Factors associated with visceral leishmaniasis in Nepal: bed-net use is strongly protective. American Journal of Tropical Medicine and Hygiene 63, 184188.CrossRefGoogle ScholarPubMed
Bern, C., A. Hightower, W., Chowdhury, R., Ali, M., Amann, J., Wagatsuma, Y., Haque, R., Kurkjian, K., Vaz, L. E., Begum, M., Akter, T., Cetre-Sossah, C. B., Ahluwalia, I. B., Dotson, E., Secor, W. E., Breiman, R. F. and Maguire, J. H. (2005). Risk factors for kala-azar in Bangladesh. Emerging Infectious Diseases 11, 655662.CrossRefGoogle ScholarPubMed
Bhattacharya, A. and Ghosh, T. N. (1983). A search for Leishmania in vertebrates from kala-azar-affected areas of Bihar, India. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 874875.CrossRefGoogle ScholarPubMed
Bhattarai, N. R., Van der Auwera, G., Khanal, B., De Doncker, S., Rijal, S., Das, M. L., Uranw, S., Ostyn, B., Praet, N., Speybroeck, N., Picado, A., Davies, C., Boelaert, M. and Dujardin, J. C. (2009). PCR and direct agglutination as Leishmania infection markers among healthy Nepalese subjects living in areas endemic for Kala-Azar. Tropical Medicine & International Health 14, 404411.CrossRefGoogle ScholarPubMed
Bhattarai, N. R., Van der Auwera, G., Rijal, S., Picado, A., Speybroeck, N., Khanal, B., De Doncker, S., Das, M. L., Ostyn, B., Davies, C., Coosemans, M., Berkvens, D., Boelaert, M. and Dujardin, J. C. (2010). Domestic animals and epidemiology of visceral leishmaniasis, Nepal. Emerging Infectious Diseases 16, 231237.CrossRefGoogle ScholarPubMed
Bowman, A. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-PLUS Illustrations. Oxford University Press Inc., New York, USA.CrossRefGoogle Scholar
Bowman, A. and Azzalini, A. (2007). R package ‘sm’: nonparametric smoothing methods (version 2.2) computer program, version By Bowman, A. and Azzalini, A. http://www.stats.gla.ac.uk/~adrian/smGoogle Scholar
Desjeux, P. (1996). Leishmaniasis. Public health aspects and control. Clinics in Dermatology 14, 417423.CrossRefGoogle Scholar
el Harith, A., Kolk, A. H., Leeuwenburg, J., Muigai, R., Huigen, E., Jelsma, T. and Kager, P. A. (1988). Improvement of a direct agglutination test for field studies of visceral leishmaniasis. Journal of Clinical Microbiology 26, 13211325.CrossRefGoogle ScholarPubMed
Guerin, P. J., Olliaro, P., Sundar, S., Boelaert, M., Croft, S. L., Desjeux, P., Wasunna, M. K. and Bryceson, A. D. (2002). Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infectious Diseases 2, 494501.CrossRefGoogle Scholar
Jacquet, D., Boelaert, M., Seaman, J., Rijal, S., Sundar, S., Menten, J. and Magnus, E. (2006). Comparative evaluation of freeze-dried and liquid antigens in the direct agglutination test for serodiagnosis of visceral leishmaniasis (ITMA-DAT/VL). Tropical Medicine & International Health 11, 17771784.CrossRefGoogle ScholarPubMed
Joshi, D. D., Sharma, M. and Bhandari, S. (2006). Visceral leishmaniasis in Nepal during 1980-2006. Journal of Communicable Diseases 38, 139148.Google ScholarPubMed
Kelsall, J. E. and Diggle, P. J. (1995). Non-parametric estimation of spatial variation in relative risk. Statistics in Medicine 14, 23352342.CrossRefGoogle ScholarPubMed
Killick-Kendrick, R. (1990). Are cattle a reservoir host of kala-azar in India? Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 754.CrossRefGoogle ScholarPubMed
Kulldorff, M. A. (1997). Spatial scan statistic. Communications in Statistics: Theory and Methods 26, 14811496.CrossRefGoogle Scholar
Kulldorff, M. A. (2009). SaTScan User Guide Computer Program, version By Kulldorff, M. A. http://www.satscan.org/techdoc.htmlGoogle Scholar
Lawson, A. B. and Williams, F. L. (1993). Applications of extraction mapping in environmental epidemiology. Statistics in Medicine 12, 12491258.CrossRefGoogle ScholarPubMed
Lukes, J., Mauricio, I. L., Schonian, G., Dujardin, J. C., Soteriadou, K., Dedet, J. P., Kuhls, K., Tintaya, K. W., Jirku, M., Chocholova, E., Haralambous, C., Pratlong, F., Obornik, M., Horak, A., Ayala, F. J. and Miles, M. A. (2007). Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proceedings of the National Academy of Sciences, USA 104, 93759380.CrossRefGoogle ScholarPubMed
Mahmoud, M. M. and Elmalik, K. H. (1977). Trypanosomiasis:goats as a possible reservoir of Trypanosoma congolense in the Republic of the Sudan. Tropical Animal Health and Production 9, 167170.CrossRefGoogle ScholarPubMed
Mukhtar, M. M., Sharief, A. H., el Saffi, S. H., Harith, A. E., Higazzi, T. B., Adam, A. M. and Abdalla, H. S. (2000). Detection of antibodies to Leishmania donovani in animals in a kala-azar endemic region in eastern Sudan: a preliminary report. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 3336.CrossRefGoogle Scholar
Oskam, L., Slappendel, R. J., Beijer, E. G., Kroon, N. C., van Ingen, C. W., Ozensoy, S., Ozbel, Y. and Terpstra, W. J. (1996). Dog-DAT: a direct agglutination test using stabilized, freeze-dried antigen for the serodiagnosis of canine visceral leishmaniasis. FEMS Immunology and Medical Microbiology 16, 235239.CrossRefGoogle ScholarPubMed
Pandey, K., Pant, S., Kanbara, H., Shuaibu, M. N., Mallik, A. K., Pandey, B. D., Kaneko, O. and Yanagi, T. (2008). Molecular detection of Leishmania parasites from whole bodies of sandflies collected in Nepal. Parasitology Research 103, 293297.CrossRefGoogle ScholarPubMed
Rajendran, P., Chatterjee, S. N., Dhanda, V. and Dhiman, R. C. (1985). Observations on the role of vespertilionid bats in relation to non-human vertebrate reservoir in Indian kala-azar. Indian Journal of Pathology and Microbiology 28, 153158.Google ScholarPubMed
Rijal, S., Uranw, S., Chappuis, F., Picado, P., Khanal, B., Paudel, I. P., Andersen, E. W., Meheus, F., Ostyn, B., Das, M. L., Davies, C. and Boelaert, M. (2010). Epidemiology of Leishmania donovani infection in high-transmission foci in Nepal. Tropical Medicine & International Health 15 (Suppl. 2) (in the Press).CrossRefGoogle ScholarPubMed
Schenkel, K., Rijal, S., Koirala, S., Koirala, S., Vanlerberghe, V., Van der Stuyft, P., Gramiccia, M. and Boelaert, M. (2006). Visceral leishmaniasis in southeastern Nepal: a cross-sectional survey on Leishmania donovani infection and its risk factors. Tropical Medicine & International Health 11, 17921799.CrossRefGoogle Scholar
Srivastava, L. and Chakarvarty, A. K. (1984). Investigation of possible zoonotic reservoirs of Indian kala-azar. Annals of Tropical Medicine and Parasitology 78, 501504.CrossRefGoogle ScholarPubMed
Williams, A. O., Mutinga, J. and Rodgers, M. (1991). Leishmaniasis in a domestic goat in Kenya. Molecular and Cellular Probes 5, 319325.CrossRefGoogle Scholar
Supplementary material: File

Khanal Supplementary material

Map.doc

Download Khanal Supplementary material(File)
File 1.1 MB