Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T15:43:55.030Z Has data issue: false hasContentIssue false

Evidence for pre-zygotic reproductive barrier between the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae)

Published online by Cambridge University Press:  17 February 2010

M. Elbaz
Affiliation:
Department of Entomology, Faculty of Agriculture, the Hebrew University of Jerusalem, Rehovot76100, Israel
N. Lahav
Affiliation:
Department of Entomology, Faculty of Agriculture, the Hebrew University of Jerusalem, Rehovot76100, Israel
S. Morin*
Affiliation:
Department of Entomology, Faculty of Agriculture, the Hebrew University of Jerusalem, Rehovot76100, Israel
*
*Author for correspondence Fax: 972-8-9466768 E-mail: morin@agri.huji.ac.il

Abstract

The degree of reproductive isolation between the B and Q biotypes of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is currently not clear. Laboratory experiments have shown that the two biotypes are capable of producing viable F1 hybrids but that these females are sterile as their F2 generation failed to develop, indicating, most likely, a post-zygotic reproductive barrier. Here, we confirm, by molecular and ecological tools, that the B and Q biotypes of Israel are genetically isolated and provide two independent lines of evidence that support the existence of a pre-zygotic reproductive barrier between them. Firstly, monitoring of mating behaviors in homogeneous and heterogeneous couples indicated no copulation events in heterogeneous couples compared to ∼50% in homogeneous B and Q couples. Secondly, we could not detect the presence of sperm in the spermathecae of females from heterogeneous couples, compared to 50% detection in intra-B biotype crosses and 15% detection in intra-Q biotype crosses. The existence of pre-zygotic reproductive barriers in Israeli B and Q colonies may indicate a reinforcement process in which mating discrimination is strengthened between sympatric taxa that were formerly allopatric, to avoid maladaptive hybridization. As the two biotypes continued to perform all courtship stages prior to copulation, we also conducted mixed cultures experiments in order to test the reproductive consequences of inter-biotype courtship attempts. In mixed cultures, a significant reduction in female fecundity was observed for the Q biotype but not for the B biotype, suggesting an asymmetric reproductive interference effect in favour of the B biotype. The long-term outcome of this effect is yet to be determined since additional environmental forces may reduce the probability of demographic displacement of one biotype by the other in overlapping niches.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alon, M., Benting, J., Lueke, B., Ponge, T., Alon, F. & Morin, S. (2006) Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology 36, 7179.CrossRefGoogle ScholarPubMed
Boykin, L.M., Shatters, R.G., Rosell, R.C., McKenzie, C.L., Bagnall, R.A., De Barro, P. & Frohlich, D.R. (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Molecular Phylogenetics and Evolution 44, 13061319.CrossRefGoogle ScholarPubMed
Brown, J.K. (2000) Molecular markers for the identification and global tracking of whitefly vector-Begomovirus complexes. Virus Research 71, 233260.CrossRefGoogle ScholarPubMed
Brown, J.K. (2007) The Bemisia tabaci complex: genetic and phenotypic variability drives begomovirus spread and virus diversifcation Available online at http://www.apsnet.org/online/feature/btabaci/ (accessed 13 January 2010).CrossRefGoogle Scholar
Brown, J.K., Frohlich, D.R. & Rosell, R.C. (1995) The Sweet-Potato or Silverleaf Whiteflies – Biotypes of Bemisia-Tabaci or a Species Complex. Annual Review of Entomology 40, 511534.CrossRefGoogle Scholar
Butlin, R. (1987) Speciation by reinforcement. Trends in Ecology & Evolution 2, 8–13.CrossRefGoogle ScholarPubMed
Butlin, R.K. (1995) Reinforcement: an idea evolving. Trends in Ecology & Evolution 10, 432434.CrossRefGoogle ScholarPubMed
Chiel, E., Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Katzir, N., Inbar, M. & Ghanim, M. (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bulletin of Entomological Research 97, 407413.CrossRefGoogle ScholarPubMed
Chu, D., Wan, F.H., Tao, Y.L., Liu, G.X., Fan, Z.X. & Bi, Y.P. (2008) Genetic differentiation of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype Q based on mitochondrial DNA markers. Insect Science 15, 115123.CrossRefGoogle Scholar
Costa, H.S. & Brown, J.K. (1991) Variation in biological characteristics and esterase patterns among populations of Bemisia-Tabaci, and the association of one population with silverleaf symptom induction. Entomologia Experimentalis et Applicata 61, 211219.CrossRefGoogle Scholar
Costa, H.S., Brown, J.K., Sivasupramaniam, S. & Bird, J. (1993) Regional distribution, insecticide resistance, and reciprocal crosses between the A and B biotype of Bemisia-Tabaci. Insect Science and its Application 14, 255266.Google Scholar
Coyne, J.A. & Orr, H.A. (1989) Patterns of speciation in drosophila. Evolution 43, 362381.CrossRefGoogle ScholarPubMed
Dayan, T. & Simberloff, D. (2005) Ecological and community-wide character displacement: the next generation. Ecology Letters 8, 875894.CrossRefGoogle Scholar
De Barro, P.J. & Hart, P.J. (2000) Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. Bulletin of Entomological Research 90, 103112.CrossRefGoogle ScholarPubMed
De Barro, P.J., Driver, F., Trueman, J.W.H. & Curran, J. (2000) Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Molecular Phylogenetics and Evolution 16, 2936.CrossRefGoogle ScholarPubMed
De Barro, P.J., Trueman, J.W.H. & Frohlich, D.R. (2005) Bemisia argentifolii is a race of B-tabaci (Hemiptera: Aleyrodidae): the molecular genetic differentiation of B-tabaci populations around the world. Bulletin of Entomological Research 95, 193203.CrossRefGoogle ScholarPubMed
Dennehy, T.J., DeGain, B.A., Harpold, V.S., Brown, J.K., Morin, S., Fabrick, J.A. & Nichols, R.L. (2005) New challenges to management of whitefly resistance to insecticides in Arizona. The University of Arizona Cooperative Extention Vegetable Report 32, 32pp.Google Scholar
Dobzhansky, T. (1937) Genetics and the Origin of Species. New York, USA, Columbia University Press.Google Scholar
Dobzhansky, T. (1940) Speciation as a stage in evolutionary divergence. American Naturalist 74, 312321.Google Scholar
Fang, J., Kritzman, A., Yonash, N., Gera, A., Pollak, N. & Lavi, U. (2005) Genetic variation of thrips populations assessed by amplified fragment length polymorphism (Thysanoptera: Thripidae). Annals of the Entomological Society of America 98, 351358.CrossRefGoogle Scholar
Foster, G.G., Whitten, M.J., Prout, T. & Gill, R. (1972) Chromosome rearrangement for the control of insect pests. Science 176, 875880.CrossRefGoogle ScholarPubMed
Frohlich, D.R., Torres-Jerez, I., Bedford, I.D., Markham, P.G. & Brown, J.K. (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology 8, 16831691.CrossRefGoogle ScholarPubMed
Ghanim, M., Sobol, I., Ghanim, M. & Czosnek, H. (2007) Horizontal transmission of begomoviruses between Bemisia tabaci biotypes. Arthropod-Plant Interactions 1, 195204.CrossRefGoogle Scholar
Gottlieb, Y., Ghanim, M., Chiel, E., Gerling, D., Portnoy, V., Steinberg, S., Tzuri, G., Horowitz, A.R., Belausov, E., Mozes-Daube, N., Kontsedalov, S., Gershon, M., Gal, S., KatZir, N. & Zchori-Fein, E. (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Applied and Environmental Microbiology 72, 36463652.CrossRefGoogle ScholarPubMed
Guirao, P., Beitia, F. & Cenis, J.L. (1997) Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research 87, 587593.CrossRefGoogle Scholar
Heddi, A., Grenier, A.M., Khatchadourian, C., Charles, H. & Nardon, P. (1999) Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proceedings of the National Academy of Sciences of the United States of America 96, 68146819.CrossRefGoogle ScholarPubMed
Hochkirch, A., Groning, J. & Bucker, A. (2007) Sympatry with the devil: reproductive interference could hamper species coexistence. Journal of Animal Ecology 76, 633642.CrossRefGoogle ScholarPubMed
Horowitz, A.R., Denholm, I., Gorman, K., Cenis, J.L., Kontsedalov, S. & Ishaaya, I. (2003a) Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica 31, 9498.CrossRefGoogle Scholar
Horowitz, A.R., Gorman, K., Ross, G. & Denholm, I. (2003b) Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q biotype). Archives of Insect Biochemistry and Physiology 54, 177186.CrossRefGoogle ScholarPubMed
Horowitz, A.R., Kontsedalov, S., Khasdan, V. & Ishaaya, I. (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology 58, 216225.CrossRefGoogle ScholarPubMed
Howard, D.J. (1993) Reinforcement: the origin, dynamics, and fate of an evolutionary hypothesis. pp. 4669in Harrison, R.G. (Ed.) Hybrid Zones and the Evolutionary Process. Oxford, Oxford University Press.CrossRefGoogle Scholar
Hsieh, C.H., Wang, C.H. & Ko, C.C. (2007) Evidence from molecular markers and population genetic analyses suggests recent invasions of the western north pacific region by biotypes B and Q of Bemisia tabaci (Gennadius). Environmental Entomology 36, 952961.CrossRefGoogle ScholarPubMed
Kanmiya, K. (2006) Mating behaviour and vibratory signals in whiteflies (Hemiptera: Aleyrodidae). pp. 365396in Drosopoulous, S. & Claridge, M.F. (Eds) Insect Sounds and Communication: Physiology, Behaviour, Ecology and Evolution. Boca Raton, FL, USA, CRC Press.Google Scholar
Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman, K., Denholm, I. & Morin, S. (2008) Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology 38, 634644.CrossRefGoogle Scholar
Khasdan, V., Levin, I., Rosner, A., Morin, S., Kontsedalov, S., Maslenin, L. & Horowitz, A.R. (2005) DNA markers for identifying biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) and studying population dynamics. Bulletin of Entomological Research 95, 605613.CrossRefGoogle ScholarPubMed
Lee, M.H., Kang, S.K., Lee, S.Y., Lee, H.S., Choi, J.Y., Lee, G.S., Kim, W.Y., Lee, S.W., Kim, S.G. & Uhm, K.B. (2005) Occurrence of the B- and Q- biotypes of Bemisia tabaci in Korea. Korean Journal of Applied Entomology 44, 169175.Google Scholar
Lemmon, A.R., Smadja, C. & Kirkpatrick, M. (2004) Reproductive character displacement is not the only possible outcome of reinforcement. Journal of Evolutionary Biology 17, 177183.CrossRefGoogle Scholar
Li, T.Y., Vinson, S.B. & Gerling, D. (1989) Courtship and Mating-Behavior of Bemisia-Tabaci (Homoptera, Aleyrodidae). Environmental Entomology 18, 800806.CrossRefGoogle Scholar
Liu, S.S., De Barro, P.J., Xu, J., Luan, J.B., Zang, L.S., Ruan, Y.M. & Wan, F.H. (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318, 17691772.CrossRefGoogle Scholar
Ma, D., Hadjistylli, M., Gorman, K., Denholm, I. & Devine, G. (2004) Pre- and post-zygotic breeding incompatibilities between B and Q biotypes of Bemisia tabaci. pp. 1314 in Proceeding of the 2nd European Whitefly Symposium. 5–9 October 2004, Cavtat, Croatia.Google Scholar
Martinez-Carrillo, J.L. & Brown, J.K. (2007) First report of the Q biotype of Bemisia tabaci in southern Sonora, Mexico. Phytoparasitica 35, 282284.CrossRefGoogle Scholar
McLain, D.K. & Shure, D.J. (1987) Pseudo competition: interspecific displacement of insect species through misdirected courtship. Oikos 49, 291296.CrossRefGoogle Scholar
Moya, A., Guirao, P., Cifuentes, D., Beitia, F. & Cenis, J.L. (2001) Genetic diversity of Iberian populations of Bemisia tabaci (Hemiptera: Aleyrodidae) based on random amplified polymorphic DNA-polymerase chain reaction. Molecular Ecology 10, 891897.CrossRefGoogle ScholarPubMed
Muniz, M. (2000) Host suitability of two biotypes of Bemisia tabaci on some common weeds. Entomologia Experimentalis et Applicata 95, 6370.CrossRefGoogle Scholar
Muniz, M. & Nombela, G. (2001) Differential variation in development of the B- and Q-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on sweet pepper at constant temperatures. Environmental Entomology 30, 720727.CrossRefGoogle Scholar
Nauen, R., Stumpf, N. & Elbert, A. (2002) Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science 58, 868875.CrossRefGoogle ScholarPubMed
Noor, M.A. (1995) Speciation driven by natural selection in Drosophila. Nature 375, 674675.CrossRefGoogle ScholarPubMed
Noor, M.A.F. (1999) Reinforcement and other consequences of sympatry. Heredity 83, 503508.CrossRefGoogle ScholarPubMed
Oliveira, M.R.V., Henneberry, T.J. & Anderson, P. (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection 20, 709723.CrossRefGoogle Scholar
Pascual, S. (2006) Mechanisms in competition, under laboratory conditions, between Spanish biotypes B and Q of Bemisia tabaci (Gennadius). Spanish Journal of Agricultural Research 4, 351354.CrossRefGoogle Scholar
Pascual, S. & Callejas, C. (2004) Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bulletin of Entomological Research 94, 369375.CrossRefGoogle ScholarPubMed
Perlman, S.J., Hunter, M.S. & Zchori-Fein, E. (2006) The emerging diversity of Rickettsia. Proceedings of the Royal Society B-Biological Sciences 273, 20972106.CrossRefGoogle ScholarPubMed
Perring, T.M. (2001) The Bemisia tabaci species complex. Crop Protection 20, 725737.CrossRefGoogle Scholar
Ronda, M., Ada'n, A., Beitia, D.F., Cifuentes, D. & Cenis, J.L. (2000) Interbreeding between biotypes of Bemisia tabaci. European Whitefly Studies Network Newsletter #3.Google Scholar
Saetre, G.P., Moum, T., Bures, S., Kral, M., Adamjan, M. & Moreno, J. (1997) A sexually selected character displacement in flycatchers reinforces premating isolation. Nature 387, 589592.CrossRefGoogle Scholar
Simón, B., Cenis, J.L., Beitia, F., Khalid, S., Moreno, I.M., Fraile, A. & Garcia-Arenal, F. (2003) Genetic structure of field populations of begomoviruses and of their vector Bemisia tabaci in Pakistan. Phytopathology 93, 14221429.CrossRefGoogle ScholarPubMed
Singer, F. (1990) Reproductive Costs Arising from Incomplete Habitat Segregation among 3 Species of Leucorrhinia Dragonflies. Behavior 115, 188202.CrossRefGoogle Scholar
Stouthamer, R., Breeuwer, J.A.J. & Hurst, G.D.D. (1999) Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annual Review of Microbiology 53, 71–102.CrossRefGoogle ScholarPubMed
Thao, M.L.L. & Baumann, P. (2004) Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Current Microbiology 48, 140144.CrossRefGoogle ScholarPubMed
Tsagkarakou, A., Tsigenopoulos, C.S., Gorman, K., Lagnel, J. & Bedford, I.D. (2007) Biotype status and genetic polymorphism of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Greece: mitochondrial DNA and microsatellites. Bulletin of Entomological Research 97, 2940.CrossRefGoogle ScholarPubMed
Ueda, S. & Brown, J.K. (2006) First report of the Q biotype of Bemisia tabaci in Japan by mitochondrial cytochrome oxidase I sequence analysis. Phytoparasitica 34, 405411.CrossRefGoogle Scholar
Verrel, P.A. (1994) Is decreased frequency of mating among conspecifics a cost of sympatry in salamanders? Evolution 48, 921925.CrossRefGoogle Scholar
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Vandelee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. & Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.CrossRefGoogle ScholarPubMed
Wilson, M., Moshitzky, P., Laor, E., Ghanim, M., Horowitz, A.R. & Morin, S. (2007) Reversal of resistance to pyriproxyfen in the Q biotype of Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science 63, 761768.CrossRefGoogle Scholar
Zhang, L.P., Zhang, Y.J., Zhang, W.J., Wu, Q.J., Xu, B.Y. & Chu, D. (2005) Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. Journal of Applied Entomology 129, 121128.CrossRefGoogle Scholar