Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T10:43:51.968Z Has data issue: false hasContentIssue false

POOR MODULES: THE OPPOSITE OF INJECTIVITY

Published online by Cambridge University Press:  24 June 2010

ADEL N. ALAHMADI
Affiliation:
Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia e-mail: analahmadi@kau.edu.sa
MUSTAFA ALKAN
Affiliation:
Department of Mathematics, Akdeniz University, Antalya, Turkey e-mail: alkan@akdeniz.edu.tr
SERGIO LÓPEZ-PERMOUTH
Affiliation:
Department of Mathematics, Ohio University, Athens, OH 45701, USA e-mail: lopez@math.ohiou.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A module M is called poor whenever it is N-injective, then the module N is semisimple. In this paper the properties of poor modules are investigated and are used to characterize various families of rings.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2010

References

REFERENCES

1.Anderson, F. W. and Fuller, K. R., Rings and categories of modules (Springer-Verlag, New-York, 1974).CrossRefGoogle Scholar
2.Boyle, A. K., Hereditary QI rings, Trans. Amer. Math. Soc. 192 (1974), 115120.Google Scholar
3.Boyle, A. K. and Goodearl, K. R., Rings over which certain modules are injective, Pacific J. Math. 58 (1975), 4353.CrossRefGoogle Scholar
4.Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending modules. Pitman RN mathematics 313 (Longman, Harlow, UK, 1994).Google Scholar
5.Faith, C., When are all proper cyclics injective?, Pacific J. Math. 45 (1973), 97112.CrossRefGoogle Scholar
6.Faith, C., Algebra: Rings, modules and categories II (Springer-Verlag, New York/Berlin/Heidelberg, 1976).Google Scholar
7.Faith, C., On hereditary rings and Boyle's conjecture, Arch. Math. (Basel) 27 (1976), 113119.CrossRefGoogle Scholar
8.Gómez-Pardo, J. L. and Yousif, M. F., Semiperfect Min-CS Rings, Glasgow Math. J. 41 (1999), 231238.CrossRefGoogle Scholar
9.Goodearl, K. R., Singular torsion and the splitting properties, American Mathematical Society, Memoirs of the AMS, Number 124 (Providence, Rhode Island, 1972).CrossRefGoogle Scholar
10.Dinh Van, H., Smith, P. F. and Wisbauer, R., A note on GV-modules with Krull dimension. Glasgow Math. J. 32 (3) (1990), 389390.Google Scholar
11.Lam, T. Y., A first course in noncommutative rings, 2nd. Ed. (Springer-Verlag, New York/Berlin/Heidelberg, 2001).CrossRefGoogle Scholar
12.Michler, G. O. and Villamayor, O. E., On rings whose simpe modules are injective, J. Algebra 25 (1973), 185201.CrossRefGoogle Scholar
13.Mohamed, S. H. and Müller, B. J., Continuous and discrete modules, London Mathematical Society Lecture Note 147 (Cambridge University Press, Cambridge, UK, 1990).CrossRefGoogle Scholar
14.Nicholson, W. K. and Yousif, M. F., Weakly continuous and C2 conditions. Comm. Algebra 29 (6) (2001), 24292446.CrossRefGoogle Scholar
15.Özcan, A. Ç. and Alkan, M., Semiperfect modules with respect to a preradical, Comm. Algebra 34 (2006), 841856.CrossRefGoogle Scholar
16.Singh, S., Quasi-injective and quasi-projective modules over hereditary Noetherian prime rings, Can. J. Math. 26 (1974), 11731185.CrossRefGoogle Scholar
17.Singh, S., Modules over hereditary Noetherian prime rings, Can. J. Math. 27 (1975), 867883.CrossRefGoogle Scholar
18.Singh, S., Modules over hereditary Noetherian prime rings, II, Can. J. Math. 28 (1976), 7382.CrossRefGoogle Scholar
19.Smith, P. F., CS-modules and weak CS-modules, in noncommutative ring theory, Lecture Notes in Mathematics, 1448 (Springer, Berlin, 1990), 99115.Google Scholar
20.Wisbauer, R., Foundations of module and ring theory (Gordon and Breach, Reading, UK, 1991).Google Scholar
21.Yousif, M. F., On continuous rings, J. Algebra 191 (1997), 495509.CrossRefGoogle Scholar