Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T11:34:36.530Z Has data issue: false hasContentIssue false

Toward Precision Measurement of Central Black Hole Masses

Published online by Cambridge University Press:  03 June 2010

Bradley M. Peterson*
Affiliation:
Department of Astronomy and Center for Cosmology and AstroParticle Physics, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA Email: peterson@astronomy.ohio-state.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review briefly direct and indirect methods of measuring the masses of black holes in galactic nuclei, and then focus attention on supermassive black holes in active nuclei, with special attention to results from reverberation mapping and their limitations. We find that the intrinsic scatter in the relationship between the AGN luminosity and the broad-line region size is very small, ~0.11 dex, comparable to the uncertainties in the better reverberation measurements. We also find that the relationship between reverberation-based black hole masses and host-galaxy bulge luminosities also seems to have surprisingly little intrinsic scatter, ~0.17 dex. We note, however, that there are still potential systematics that could affect the overall mass calibration at the level of a factor of a few.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bentz, M. C., et al. 2006a, ApJ, 644, 133Google Scholar
Bentz, M. C., et al. 2006b, ApJ, 651, 775Google Scholar
Bentz, M. C., Peterson, B. M., Pogge, R. W., & Vestergaard, M. 2009a, ApJ, 694, L166Google Scholar
Bentz, M. C., et al. 2009b, ApJ, 697, 160Google Scholar
Blandford, R. D. & McKee, C. F. 1982, ApJ, 255, 419Google Scholar
Collin, S., Kawaguchi, T., Peterson, B. M., & Vestergaard, M. 2006, A&A, 456, 75Google Scholar
Davies, R. I., et al. 2006, ApJ, 646, 754Google Scholar
Denney, K. D., Peterson, B. M., Dietrich, M., Vestergaard, M., & Bentz, M. C. 2009, ApJ, 692, 246Google Scholar
Denney, K. D., et al. 2010, in preparationGoogle Scholar
Gebhardt, K. & Thomas, J. 2009, ApJ, 700, 1690Google Scholar
Gültekin, K., et al. 2009, ApJ, 698, 198Google Scholar
Herrnstein, J. R., Moran, J. M., Greenhill, L. J., & Trotter, A. S. 2005, ApJ, 629, 719Google Scholar
Hicks, E. K. S. & Malkan, M. A. 2008, ApJS, 174, 31Google Scholar
Jarvis, M. J. & McLure, R. J. 2006, MNRAS, 369, 182Google Scholar
Kaspi, S., Smith, P. S., Netxer, H., Maoz, D., Jannuzi, B. T., & Giveon, U. 2000, ApJ, 533, 631Google Scholar
Kaspi, S., Brandt, W. N., Maoz, D., Netzer, H., Schneider, D. P., & Shemmer, O. 2007, ApJ, 659, 997Google Scholar
Marconi, A., et al. 2008, ApJ, 678, 693Google Scholar
Marconi, A., et al. 2009, ApJ, 698, 103Google Scholar
McGill, K. L., Woo, J.-H., Treu, T., & Malkan, M. A. 2008, ApJ, 673, 703Google Scholar
Metzroth, K. G., Onken, C. A., & Peterson, B. M. 2006, ApJ, 647, 901Google Scholar
Netzer, H. 2009, ApJ, 695, 793Google Scholar
Onken, C. A., et al. 2004, ApJ, 615, 645Google Scholar
Onken, C. A., et al. 2007, ApJ, 670, 105Google Scholar
Onken, C. A. & Kollmeier, J. A. 2008, ApJ, 689, L13Google Scholar
Pastorini, G., et al. 2007, A&A, 469, 405Google Scholar
Peterson, B. M. 1993, PASP, 105, 247Google Scholar
Peterson, B. M. 2001, in Advanced Lectures on the Starburst–AGN Connection, ed. Aretxaga, I., Kunth, D., & Mújica, R., (Singapore: World Scientific), p. 3Google Scholar
Peterson, B. M. & Wandel, A. 1999, ApJ, 521, 95Google Scholar
Peterson, B. M., et al. 2004, ApJ, 613, 682Google Scholar
Shen, Y., Greene, J. E., Strauss, M. A., Richards, G. T., & Schneider, D. P. 2008, ApJ, 680, 169Google Scholar
Siopis, C., et al. 2009, ApJ, 693, 946Google Scholar
Vestergaard, M. 2002, ApJ, 571, 733Google Scholar
Wandel, A., Peterson, B. M., & Malkan, M. A. 1999, ApJ, 526, 579Google Scholar
Wills, B. J. & Browne, I. W. A. 1986, ApJ, 302, 56Google Scholar