Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-17T20:12:29.525Z Has data issue: false hasContentIssue false

Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana

Published online by Cambridge University Press:  28 May 2010

Clément Stahl
Affiliation:
INRA, UMR 745 ‘Ecologie des Forêts de Guyane’, Campus Agronomique, BP 709, 97387 Kourou Cedex, French Guiana
Benoit Burban
Affiliation:
INRA, UMR 745 ‘Ecologie des Forêts de Guyane’, Campus Agronomique, BP 709, 97387 Kourou Cedex, French Guiana
Félix Bompy
Affiliation:
INRA, UMR 745 ‘Ecologie des Forêts de Guyane’, Campus Agronomique, BP 709, 97387 Kourou Cedex, French Guiana
Zachari B. Jolin
Affiliation:
INRA, UMR 745 ‘Ecologie des Forêts de Guyane’, Campus Agronomique, BP 709, 97387 Kourou Cedex, French Guiana
Juliette Sermage
Affiliation:
INRA, UMR 745 ‘Ecologie des Forêts de Guyane’, Campus Agronomique, BP 709, 97387 Kourou Cedex, French Guiana
Damien Bonal*
Affiliation:
INRA, UMR 745 ‘Ecologie des Forêts de Guyane’, Campus Agronomique, BP 709, 97387 Kourou Cedex, French Guiana INRA, UMR INRA-UHP 1137 ‘Ecologie et Ecophysiologie Forestière’, 54280 Champenoux, France
*
1Corresponding author. Email: bonal@nancy.inra.fr

Abstract:

Large seasonal variation in the rate of change in girth of tropical rain-forest tree species has been described, but its origin is still under debate. We tested whether this variation might be related to variation in atmospheric relative humidity through its influence on bark water content and thickness. Variation in trunk circumference of 182 adult trees was measured about twice a month in an undisturbed tropical rain forest over 18 mo using dendrometers. Furthermore, a laboratory experiment was conducted to test the direct influence of relative air humidity on bark water content and thickness. In the field, most trees displayed highly positive rates of change in girth at the onset of the wet season, while a quarter of the trees displayed negative changes during long dry seasons, whatever their total annual growth. This variation was correlated with environmental conditions, particularly with atmospheric relative humidity. Trees with high bark water content and thickness displayed a stronger decrease in girth during the dry season. In the chamber experiment, desiccation induced a decrease in the diameter of the trunk sections in tandem with a decrease in bark water content. As a result, seasonal variation in the rate of change in girth of tropical rain-forest trees reflects variation in trunk biophysical properties, through the influence of relative humidity on bark properties, but not directly variation in secondary growth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AREND, M. & FROMM, J. 2007. Seasonal change in the drought response of wood cell development in poplar. Tree Physiology 27:985992.CrossRefGoogle ScholarPubMed
BAKER, T. R., AFFUM-BAFFOE, K., BURSLEM, D. F. R. P. & SWAINE, M. D. 2002. Phenological differences in tree water use and the timing of tropical forest inventories: conclusions from patterns of dry season diameter change. Forest Ecology and Management 171:261274.Google Scholar
BAKER, T. R., BURSLEM, D. F. R. P. & SWAINE, M. D. 2003a. Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest. Journal of Tropical Ecology 19:109125.Google Scholar
BAKER, T. R., SWAINE, M. D. & BURSLEM, D. F. R. P. 2003b. Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspectives in Plant Ecology Evolution and Systematics 6:2136.CrossRefGoogle Scholar
BOGGAN, J., FUNK, V., KELLOFF, C., HOFF, M., CREMERS, G. & FEUILLET, C. 1997. Checklist of the plants of the Guianas: Guyana, Surinam, French Guiana. (Second edition). National Museum of Natural History, Smithsonian Institution, Washington DC. 238 pp.Google Scholar
BONAL, D., BOSC, A., PONTON, S., GORET, J.-Y., BURBAN, B., GROSS, P., BONNEFOND, J.-M., ELBERS, J. A. N., LONGDOZ, B., EPRON, D., GUEHL, J.-M. & GRANIER, A. 2008. Impact of severe dry season on net ecosystem exchange in the Neotropical rain forest of French Guiana. Global Change Biology 14:19171933.CrossRefGoogle Scholar
BORCHERT, R. 1994. Water status and development of tropical trees during seasonal drought. Trees – Structure and Function 8:115125.CrossRefGoogle Scholar
BORCHERT, R. 1999. Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA Journal 20:239247.CrossRefGoogle Scholar
BREITSPRECHER, A. & BETHEL, J. S. 1990. Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology 71:11561164.CrossRefGoogle Scholar
BRIENEN, R. & ZUIDEMA, P. 2005. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:112.Google Scholar
BROCKWELL, P. J. & DAVIS, R. A. 1991. Time series and forecasting methods. (2nd edition). Springer, New York. 555 pp.Google Scholar
BULLOCK, S. H. 1997. Effects of seasonal rainfall on radial growth in two tropical tree species. International Journal of Biometeorology 41:1316.Google Scholar
CAIRNS, M. A., BROWN, S., HELMER, E. H. & BAUMGARDNER, G. A. 1997. Root biomass allocation in the world's upland forests. Oecologia 111:111.CrossRefGoogle ScholarPubMed
CATTELINO, P. J., BECKER, C. A. & FULLER, L. G. 1986. Construction and installation of homemade dendrometer bands. Northern Journal of Applied Forestry 3:7375.CrossRefGoogle Scholar
CLARK, D. A. & CLARK, D. B. 1994. Climate-induced variation in canopy tree growth in a Costa Rican tropical rain forest. Journal of Ecology 82:865872.Google Scholar
DA SILVA, R. P., DOS SANTOS, J., TRIBUZY, E. S., CHAMBERS, J. Q., NAKAMURA, S. & HIGUCHI, N. 2002. Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. Forest Ecology and Management 166:295301.CrossRefGoogle Scholar
DAUBENMIRE, R. 1973. Phenology and other characteristics of tropical semi-deciduous forest in north-western Costa Rica. Journal of Ecology 60:147171.Google Scholar
DAUDET, F. A., AMEGLIO, T., COCHARD, H., ARCHILLA, O. & LACOINTE, A. 2005. Experimental analysis of the role of water and carbon in tree stem diameter variations. Journal of Experimental Botany 56:135144.Google Scholar
DAWKINS, H. C. 1958. The management of tropical high forest with special reference to Uganda. Imperial Forestry Institute Paper 34.Google Scholar
DÉTIENNE, P. & MARIAUX, A. 1977. The nature and periodicity of tree-rings in African redwood Meliaceae. Bois et Forêts des Tropiques 175:5261.Google Scholar
FAVRICHON, V. 1998. Apports d'un modèle démographique plurispécifique pour l'étude des relations diversité/dynamique en forêt tropicale guyanaise. Annals of Forest Science 55:655669.CrossRefGoogle Scholar
GALL, R., LANDOLT, W., SCHLEPPI, P., MICHELLOD, V. & BUCHER, J. B. 2002. Water content and bark thickness of Norway spruce (Picea abies) stems: phloem water capacitance and xylem sap flow. Tree Physiology 22:613623.CrossRefGoogle ScholarPubMed
GRAHAM, E. A., MULKEY, S. S., KITAJIMA, K., PHILLIPS, N. G. & WRIGHT, S. J. 2003. Cloud cover limits net CO2 uptake and growth of a rain forest tree during tropical rainy seasons. Proceedings of the National Academy of Sciences USA 100:572576.Google Scholar
HEGDE, V., CHANDRAN, M. D. S. & GADGIL, M. 1998. Variation in bark thickness in a tropical forest community of Western Ghats in India. Functional Ecology 12:313318.Google Scholar
HOLBROOK, N. M. 1995. Stem water storage. Pp. 151174 in Gartner, B. L. (ed.). Plant stems: physiology and functional morphology. Academic Press, San Diego. 461 pp.Google Scholar
HUTYRA, L. R., MUNGER, J. W., SALESKA, S., GOTTLIEB, E., DAUBE, B. C., DUNN, A. L., AMARAL, D. F., DE CAMARGO, P. B. & WOFSY, S. C. 2007. Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. Journal of Geophysical Research 112, G03008, doi:10.1029/2006JG000365.Google Scholar
JACKSON, R. B., CANADELL, J., EHLERINGER, J. R., MOONEY, H. A., SALA, O. E. & SCHULZE, E. D. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108:389411.Google Scholar
KEELAND, B. D. & SHARITZ, R. R. 1993. Accuracy of tree growth measurements using dendrometer bands. Canadian Journal of Forest Research 23:24542457.CrossRefGoogle Scholar
MALHI, Y. & PHILLIPS, O. L. 2005. Tropical forests and global atmospheric change. Oxford University Press, New York. 260 pp.CrossRefGoogle Scholar
MEVIK, B.-H. & WEHRENS, R. 2007. The pls Package: principal component and partial least squares regression in R. Journal of Statistical Software 18:124.CrossRefGoogle Scholar
NEPSTAD, D. C., CARVALHO DE, C. R., DAVIDSON, E. A., JIPP, P. H., LEFEBVRE, P. A., NEGREIROS, G. H., DA SILVA, E. D., STONE, T. A., TRUMBORE, S. E. & VIEIRA, S. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666669.CrossRefGoogle Scholar
OLLIVIER, M., BARALOTO, C. & MARCON, E. 2007. A trait database for Guianan rain forest trees permits intra- and inter-specific contrasts. Annals of Forest Science 64: 781786.CrossRefGoogle Scholar
PÉLISSIER, R. & PASCAL, J. P. 2000. Two-year growth patterns investigated from monthly girth records using dendrometer bands in a wet evergreen forest in India. Journal of Tropical Ecology 16:429446.CrossRefGoogle Scholar
PÉREZ, C. A., CARMONA, M. R., ARAVENA, J. C., FARINA, J. M. & ARMESTO, J. J. 2009. Environmental controls and patterns of cumulative radial increment of evergreen tree species in montane, temperate rain forests of Chiloé Island, southern Chile. Austral Ecology 34:259271.Google Scholar
POORTER, H. 1989. Plant growth analysis: towards a synthesis of the classical and the functional approach. Physiologia Plantarum 75:237244.CrossRefGoogle Scholar
PRÉVOST, M.-F. & PUIG, H. 1981. Accroissement diamétral des arbres en Guyane: observations sur quelques arbres de forêt primaire et de forêt secondaire. Bulletin du Muséum National d'Histoire Naturelle 3:147171.Google Scholar
PUIG, H. & PRÉVOST, M.-F. 1986. Périodicité de l'accroissement chez quelques arbres de Guyane. Mémoires du Muséum National d'Histoire Naturelle 132 (A):159171.Google Scholar
REICH, P. B. & BORCHERT, R. 1984. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. Journal of Ecology 72:6174.Google Scholar
ROTH, I. 1981. Structural patterns of tropical barks. Encyclopedia of Plant Anatomy Volume 9. Gebrüder Borntraeger, Berlin. 609 pp.Google Scholar
SCHOLZ, F. G., BUCCI, J., GOLDSTEIN, G., MEINZER, F. C., FRANCO, A. C. & MIRALLES-WILHELM, F. 2008. Temporal dynamics of stem expansion and contraction in savanna trees: withdrawal and recharge of stored water. Tree Physiology 28:469480.Google Scholar
STEPPE, K., SAVEYN, A., MCGUIRE, M. A., LEMEUR, R. & TESKEY, R. O. 2007. Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems. Functional Plant Biology 34:785792.CrossRefGoogle ScholarPubMed
VIEIRA, S., TRUMBORE, S., CAMARGO, P. B., SELHORST, D., CHAMBERS, J. Q., HIGUCHI, N. & MARTINELLI, L. A. 2005. Slow growth rates of Amazonian trees: consequences for carbon cycling. Proceedings of the National Academy of Sciences USA 102:1850218507.Google Scholar
WORBES, M. 1999. Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. Journal of Ecology 87:391403.Google Scholar
ZWEIFEL, R. & HÄSLER, R. 2000. Frost-induced reversible shrinkage of bark of mature subalpine conifers. Agricultural and Forest Meteorology 102:213222.CrossRefGoogle Scholar
ZWEIFEL, R. & HÄSLER, R. 2001. Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology 21:561569.CrossRefGoogle ScholarPubMed
ZWEIFEL, R., ITEM, H. & HÄSLER, R. 2000. Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees – Structure and Function 15:5057.Google Scholar
ZWEIFEL, R., ZIMMERMANN, L., ZEUGIN, F. & NEWBERY, D. M. 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Biology 57:14451459.Google Scholar