Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-27T23:53:44.423Z Has data issue: false hasContentIssue false

Observational signatures of lithium depletion in the metal-poor globular cluster NGC6397

Published online by Cambridge University Press:  23 April 2010

Karin Lind
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 857 48 Garching bei München, Germany email: klind@eso.org
Francesca Primas
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 857 48 Garching bei München, Germany email: klind@eso.org
Corinne Charbonnel
Affiliation:
Geneva Observatory, 51 chemin des Mailettes, 1290 Versoix, Switzerland Laboratoire d'Astrophysique de Toulouse-Tarbes, CNRS UMR 5572, Université de Tou louse, 14, Av. E. Belin, F-31400 Toulouse, France
Frank Grundahl
Affiliation:
Department of Physics & Astronomy, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark
Martin Asplund
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 857 41 Garching bei München, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The “stellar” solution to the cosmological lithium problem proposes that surface depletion of lithium in low-mass, metal-poor stars can reconcile the lower abundances found for Galactic halo stars with the primordial prediction. Globular clusters are ideal environments for studies of the surface evolution of lithium, with large number statistics possible to obtain for main sequence stars as well as giants. We discuss the Li abundances measured for >450 stars in the globular cluster NGC 6397, focusing on the evidence for lithium depletion and especially highlighting how the inferred abundances and interpretations are affected by early cluster self-enrichment and systematic uncertainties in the effective temperature determination.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Casagrande, L., Ramírez, I., Meléndez, J., Bessel, M., & Asplund, M. 2010, A&A, e-print: http://arxiv.org/abs/1001.3142Google Scholar
Charbonnel, C. & Primas, F. 2005, A&A, 442, 961Google Scholar
Cyburt, R. H., Fields, B. D., & Olive, K. A. 2008, JCAP, 11, 12CrossRefGoogle Scholar
Decressin, T., Charbonnel, C., & Meynet, G. 2007, A&A, 475, 859Google Scholar
Dunkley, J., Komatsu, E., Nolta, M. R. et al. 2009, ApJs, 180, 306CrossRefGoogle Scholar
González Hernández, J. I., Bonifacio, P., Caffau, E. et al. 2009, A&A, 505, 13Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K. et al. 2008, A&A, 486, 951Google Scholar
Korn, A. J., Grundahl, F., Richard, O. et al. 2007, ApJ, 671, 402CrossRefGoogle Scholar
Lind, K., Asplund, M., & Barklem, P. S. 2009a, A&A, 503, 545Google Scholar
Lind, K., Primas, F., Charbonnel, C., Grundahl, F., & Asplund, M. 2009b, A&A, 503, 545Google Scholar
Önehag, A., Gustafsson, B., Eriksson, K., & Edvardsson, B. 2009, A&A, 498, 527Google Scholar
Pasquini, L., Bonifacio, P., Molaro, P. et al. 2005, A&A, 441, 549Google Scholar
Richard, O., Michaud, G., & Richer, J. 2005, ApJ, 619, 538CrossRefGoogle Scholar
Spite, M. & Spite, F. 1982, Nature, 297, 483CrossRefGoogle Scholar
Talon, S. & Charbonnel, C. 1998, A&A, 335, 959Google Scholar
Talon, S. & Charbonnel, C. 2003, A&A, 405, 1025Google Scholar
Talon, S. & Charbonnel, C. 2004, A&A, 418, 1051Google Scholar
Wallerstein, G., Herbig, G. H., & Conti, P. S. 1965, ApJ, 141, 610CrossRefGoogle Scholar