Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T15:57:49.363Z Has data issue: false hasContentIssue false

Beryllium and boron in metal-poor stars

Published online by Cambridge University Press:  23 April 2010

Francesca Primas*
Affiliation:
European Southern Observatory, KarlSchwarzschild Strasse 2, D-85748, Garching b. München, Germany email: fprimas@eso.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Knowledge of lithium, beryllium, and boron abundances in stars of the Galactic halo and disk plays a major role in our understanding of Big Bang nucleosynthesis, cosmic-ray physics, and stellar interiors. 9Be and 10B are believed to originate entirely from spallation reactions in the interstellar medium (ISM) between α-particles and protons and heavy nuclei like carbon, nitrogen, and oxygen (CNO), whereas 11B may have an extra production channel via neutrino-spallation. Beryllium and boron are both observationally challenging, with their main resonant doublets falling respectively at 313 nm and at 250 nm. The advent of 8-10m class telescopes equipped with highly sensitive (in the near-UV/blue) spectrographs has opened up a new era of Be abundance studies. Here, I will review and discuss the most interesting results of recent observational campaigns in terms of formation and evolution of these two light elements.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Boesgaard, A. M. 1976, ApJ, 210, 466CrossRefGoogle Scholar
Boesgaard, A. M. & Heacox, W. D. 1973, ApJ (Letters), 185, 27CrossRefGoogle Scholar
Boesgaard, A. M. & Heacox, W. D. 1978, ApJ, 226, 888CrossRefGoogle Scholar
Boesgaard, A. M., Heacox, W. D., & Conti, P. S. 1977, ApJ, 214, 124Google Scholar
Boesgaard, A. M. & King, J. R. 1993, AJ, 106, 2309CrossRefGoogle Scholar
Boesgaard, A. M., Deliyannis, C. P., King, J. R., Ryan, S. G., Vogt, S. S., & Beers, T. C. 1999, AJ, 117, 1549CrossRefGoogle Scholar
Cyburt, R. H., Fields, B. D., & Olive, K. A. 2008, JCAP, Issue 11, p. 012CrossRefGoogle Scholar
Dekker, H., D'Odorico, S., Kaufer, A., Delabre, B., & Kotzlowski, H. 2000, SPIE, 4008, 534Google Scholar
Duncan, D. K., Lambert, D. L., & Lemke, M. 1992, ApJ, 401, 584CrossRefGoogle Scholar
Duncan, D. K., Primas, F., Rebull, L. M., Boesgaard, A. M., Deliyannis, C. P., Hobbs, L. M., King, J. R., & Thorburn, J. A. 1997, ApJ, 488, 338Google Scholar
Dunkley, J., Spergel, D. N. Komatsu, E. et al. 2009, ApJ, 701, 1804CrossRefGoogle Scholar
García López, R. L., Lambert, D. L., Edvardsson, B., Gustafsson, B., Kiselman, D., & Rebolo, R. 1998, ApJ, 500, 241CrossRefGoogle Scholar
Gilmore, G., Gustafsson, B., Edvardsson, B., & Nisen, P. E. 1992, Nature, 357, 379CrossRefGoogle Scholar
Gratton, R. G., Carretta, E., Desidera, S., Lucatello, S., Mazzei, P., & Barbieri, M. 2003, A&A, 406, 131Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., Jørgensen, U. G., Nordlund, Å, & Plez, B. 2008, A&A, 486, 951Google Scholar
Kiselman, D. 1994, A&A, 286, 169Google Scholar
Ito, H., Aoki, W., Honda, S., & Beers, T. C. 2009, ApJ (Letters), 698, 37CrossRefGoogle Scholar
Meneguzzi, M., Audouze, J., & Reeves, H. 1971 A&A, 15, 337Google Scholar
Molaro, P., Beckman, J. E., & Castelli, F. 1984, in Proceedings of ESA 4th European IUE Conference, p. 197Google Scholar
Nissen, P. E. & Schuster, W. E 1997, A&A, 326, 751Google Scholar
Nissen, P. E. & Schuster, W. E. 2009, in: Andersen, J., Bland-Hawthorn, J., & Nordstrüm, B. (eds.), The Galaxy Disk in Cosmological Context (Proceedings of the International Astronomical Union, IAU Symposium, Vol 254), p. 103Google Scholar
Pasquini, L., Bonifacio, P., Randich, S., Galli, D., & Gratton, R. G. 2004, A&A, 426, 651Google Scholar
Pasquini, L., Galli, D., Gratton, R. G., Bonifacio, P., Randich, S., & Valle, G. 2005, A&A (Letter), 436, 57Google Scholar
Pasquini, L., Bonifacio, P., Randich, S., Galli, D., Gratton, R. G., & Wolff, B. 2007, A&A, 464, 601Google Scholar
Primas, F., Duncan, D. K., & Thorburn, J. A. 1998, ApJ (Letters), 506, 51CrossRefGoogle Scholar
Primas, F., Duncan, D. K., Peterson, R. C., & Thorburn, J. A. 1999, A&A, 343, 545Google Scholar
Primas, F., Molaro, P., Bonifacio, P., & Hill, V. 2000a, A&A, 362, 666Google Scholar
Primas, F., Asplund, M., Nissen, P. E., & Hill, V. 2000b, A&A (Letter), 364, 42Google Scholar
Rebolo, R., Molaro, P., Abia, C., & Beckman, J. E. 1988, A&A, 193, 193Google Scholar
Reeves, H., Fowler, W. A., & Hoyle, F. 1970, Nature, 226, 727CrossRefGoogle Scholar
Rich, J. A. & Boesgaard, A. M. 2009, ApJ, 701, 1519CrossRefGoogle Scholar
Ryan, S. G., Norris, J. E., Bessell, M. S., & Deliyannis, C. P. 1992, ApJ, 388, 184CrossRefGoogle Scholar
Smiljanic, R., Pasquini, L., Bonifacio, P., Galli, D., Gratton, R. G., Randich, S., & Wolff, B. 2009, A&A, 499, 103Google Scholar
Tan, K. F., Shi, J. R., & Zhao, G. 2009, MNRAS, 392, 205CrossRefGoogle Scholar
Vangioni-Flam, E., Ramaty, R., Olive, K. A., & Casse, M. 1998, A&A, 337, 714Google Scholar
Vogt, S. S., Allen, S. L., Bigelow, B. C. et al. 1994, SPIE, 2198, 362Google Scholar