Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T05:11:06.968Z Has data issue: false hasContentIssue false

Big Bang nucleosynthesis with long-lived strongly interacting relic particles

Published online by Cambridge University Press:  23 April 2010

Motohiko Kusakabe
Affiliation:
Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan email: kusakabe@icrr.u-tokyo.ac.jp
Toshitaka Kajino
Affiliation:
Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan Department of Astronomical Science, The Graduate University for Advanced Studies, Mitaka, Tokyo 181-8588, Japan
Takashi Yoshida
Affiliation:
Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Grant J. Mathews
Affiliation:
Department of Physics, Center for Astrophysics, University of Notre Dame, Notre Dame, IN 46556, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study effects of relic long-lived strongly interacting massive particles (X particles) on big bang nucleosynthesis (BBN). The X particle is assumed to have existed during the BBN epoch, but decayed long before detected. The interaction strength between an X and a nucleon is assumed to be similar to that between nucleons. Rates of nuclear reactions and beta decay of X-nuclei are calculated, and the BBN in the presence of neutral charged X0 particles is calculated taking account of captures of X0 by nuclei. As a result, the X0 particles form bound states with normal nuclei during a relatively early epoch of BBN leading to the production of heavy elements. Constraints on the abundance of X0 are derived from observations of primordial light element abundances. Particle models which predict long-lived colored particles with lifetimes longer than ~200 s are rejected. This scenario prefers the production of 9Be and 10B. There might, therefore, remain a signature of the X particle on primordial abundances of those elements. Possible signatures left on light element abundances expected in four different models are summarized.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Aoki, W. et al. 2009, ApJ, 698, 1803CrossRefGoogle Scholar
Asplund, M. et al. 2006, ApJ, 644, 229CrossRefGoogle Scholar
Bird, C., Koopmans, K., & Pospelov, M. 2008, Phys. Rev. D, 78, 083010CrossRefGoogle Scholar
Boesgaard, A. M. et al. 1999, AJ, 117, 1549CrossRefGoogle Scholar
Boesgaard, A. M. & Novicki, M. C. 2006, ApJ, 641, 1122CrossRefGoogle Scholar
Bonifacio, P. et al. 2007, A&A, 462, 851Google Scholar
Cayrel, R. et al. 2007, A&A, 473, L37Google Scholar
Cunha, K., Smith, V. V., Boesgaard, A. M., & Lambert, D. L. 2000, ApJ, 530, 939CrossRefGoogle Scholar
Cyburt, R. H., Fields, B. D., & Olive, K. A. 2008, J. Cosmol. Astropart. Phys., 11, 12CrossRefGoogle Scholar
Duncan, D. K. et al. 1997, ApJ, 488, 338CrossRefGoogle Scholar
Dunkley, J. et al. 2009, ApJS, 180, 306CrossRefGoogle Scholar
Evoli, C., Salvadori, S., & Ferrara, A. 2008, MNRAS, 390, L14CrossRefGoogle Scholar
Garcia Lopez, R. J. et al. 1998, ApJ, 500, 241CrossRefGoogle Scholar
GarcíaPérez, A. E. Pérez, A. E. et al. 2009, A&A, 504, 213Google Scholar
Ito, H., Aoki, W., Honda, S., & Beers, T. C. 2009, ApJ (Letters), 698, L37CrossRefGoogle Scholar
Kamimura, M., Kino, Y., & Hiyama, E. 2009, Progress of Theoretical Physics, 121, 1059CrossRefGoogle Scholar
Kang, J., Luty, M. A., & Nasri, S. 2008, J. High Energy Phys., 9, 86CrossRefGoogle Scholar
Kawano, L. 1992, NASA STI/Recon Technical Report N, 92, 25163Google Scholar
Korn, A. J. et al. 2006, Nature, 442, 657; 2007, ApJ, 671, 402Google Scholar
Kusakabe, M., Kajino, T., & Mathews, G. J. 2006, Phys. Rev. D, 74, 023526CrossRefGoogle Scholar
Kusakabe, M. et al. 2007, Phys. Rev. D, 76, 121302CrossRefGoogle Scholar
Kusakabe, M. et al. 2008, ApJ, 680, 846CrossRefGoogle Scholar
Kusakabe, M. 2008, ApJ, 681, 18CrossRefGoogle Scholar
Kusakabe, M. et al. 2009a, Phys. Rev. D, 79, 123513CrossRefGoogle Scholar
Kusakabe, M., Kajino, T., Yoshida, T., & Mathews, G. J. 2009b, Phys. Rev. D, 80, 103501CrossRefGoogle Scholar
Lind, K. et al. 2009, A&A, 503, 545Google Scholar
Meléndez, J. & Ramírez, I. 2004, ApJ (Letters), 615, L33CrossRefGoogle Scholar
Pospelov, M. 2007, Phys. Rev. Lett., 98, 231301CrossRefGoogle Scholar
Prantzos, N. 2006, A&A, 448, 665Google Scholar
Primas, F., Duncan, D. K., Peterson, R. C., & Thorburn, J. A. 1999, A&A, 343, 545Google Scholar
Primas, F., Molaro, P., Bonifacio, P., & Hill, V. 2000, A&A, 362, 666Google Scholar
Primas, F., Asplund, M., Nissen, P. E., & Hill, V. 2000, A&A, 364, L42Google Scholar
Ramaty, R., Kozlovsky, B., Lingenfelter, R. E., & Reeves, H. 1997, ApJ, 488, 730Google Scholar
Rich, J. A. & Boesgaard, A. M. 2009, ApJ, 701, 1519CrossRefGoogle Scholar
Richard, O., Michaud, G., & Richer, J. 2005, ApJ, 619, 538CrossRefGoogle Scholar
Rollinde, E., Vangioni, E., & Olive, K. 2005, ApJ, 627, 666; 2006, ApJ, 651, 658CrossRefGoogle Scholar
Rollinde, E. et al. 2008, ApJ, 673, 676Google Scholar
Ryan, S. G. et al. 2000, ApJ (Letters), 530, L57Google Scholar
Shi, J. R. et al. 2007, A&A, 465, 587Google Scholar
Smiljanic, R. et al. 2009, A&A, 499, 103Google Scholar
Spite, F. & Spite, M. 1982, A&A, 115, 357Google Scholar
Steffen, M. et al. 2009, arXiv:0910.5917Google Scholar
Tan, K. F., Shi, J. R., & Zhao, G. 2009, MNRAS, 392, 205Google Scholar
Woosley, S. E. & Weaver, T. A. 1995, ApJS, 101, 181CrossRefGoogle Scholar
Yoshida, T., Kajino, T., & Hartmann, D. H. 2005, Phys. Rev. Lett., 94, 231101CrossRefGoogle Scholar