Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T02:14:26.426Z Has data issue: false hasContentIssue false

Quenching Star Formation in the Green Valley: The Mass Flux at Intermediate Redshifts

Published online by Cambridge University Press:  13 April 2010

Thiago S. Gonçalves
Affiliation:
California Institute of Technology, 1200 E. California Blvd. MC 278-17, Pasadena CA 91107, USA email: tsg@astro.caltech.edu
D. Christopher Martin
Affiliation:
California Institute of Technology, 1200 E. California Blvd. MC 278-17, Pasadena CA 91107, USA email: tsg@astro.caltech.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have obtained several hundred very deep spectra with DEIMOS/Keck in order to estimate the galactic mass flux density at intermediate redshifts (0.6 < z < 0.9) from the "blue cloud" to the red sequence across the so-called “green valley”, the intermediate region in the color-magnitude plot between those two populations. We use spectral indices (specifically Dn(4000) and Hδ, A) to determine star formation histories. Together with an independent measurement of number density of galaxies in each bin of the color-magnitude plot, one can infer the rate at which galaxies from a given sample are transiting through that bin. Measuring this value for all magnitude values, studies at lower redshift determined that the mass flux density in the green valley is comparable to both the mass build-up rate of the red sequence and the mass loss rate from the blue cloud. We show preliminary results for our intermediate redshift sample.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Baldry, I. K., Balogh, M. L., Bower, R., Galzebrook, K., & Nichol, R. C. 2004, ApJ, 600, 681CrossRefGoogle Scholar
Balogh, M. L., Baldry, I. K., Nichol, R. C., Miller, C.Bower, R., & Galzebrook, K. 2004, ApJ (Letters), 615, 101CrossRefGoogle Scholar
Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJ (Supplement Series), 149, 289Google Scholar
Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839CrossRefGoogle Scholar
Faber, S. M., Willmer, C. N. A., Wolf, C. et al. 2007, ApJ, 665, 265CrossRefGoogle Scholar
Gonçalves, T. S. & Martin, D. C. 2010, in prep.Google Scholar
Kauffmann, G., Heckman, T. M., White, S. D. M. et al. 2003, MNRAS, 341, 33CrossRefGoogle Scholar
Martin, D. C., Wyder, T. K., Schiminovich, D. et al. 2007, ApJ (Supplement Series), 173, 342Google Scholar
Nandra, K., Georgakakis, A., Willmer, C. N. A. et al. 2007, ApJ (Letters), 660, 11CrossRefGoogle Scholar
Willmer, C. N. A., Faber, S. M., Koo, D. C. et al. 2006, ApJ, 647, 853CrossRefGoogle Scholar
Wyder, T. K., Martin, D. C., Schiminovich, D. et al. 2007, ApJ (Supplement Series), 173, 293Google Scholar