Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T04:42:37.312Z Has data issue: false hasContentIssue false

Quasar Metal Abundances & Host Galaxy Evolution

Published online by Cambridge University Press:  09 March 2010

Fred Hamann
Affiliation:
Department of Astronomy, University of Florida, Gainesville, FL 32611-2055, USA email: hamann@astro.ufl.edu
Leah E. Simon
Affiliation:
Department of Astronomy, University of Florida, Gainesville, FL 32611-2055, USA email: hamann@astro.ufl.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-redshift quasars provide a unique glimpse into the early evolution of massive galaxies. The physical processes that trigger major bursts of star formation in quasar host galaxies (mergers and interactions) probably also funnel gas into the central regions to grow the super-massive black holes (SMBHs) and ignite the luminous quasar phenomenon. The globally dense environments where this occurs were probably also among the first to collapse and manufacture stars in significant numbers after the big bang. Measurements of the elemental abundances near quasars place important constraints on the nature, timing and extent of this star formation. A variety of studies using independent emission and absorption line diagnostics have shown that quasar environments have gas-phase metallicities that are typically a few times solar at all observed redshifts. These results are consistent with galaxy evolution scenarios in which large amounts of star formation (e.g., in the central regions) precede the visibly bright quasar phase. An observed trend for higher metallicities in more luminmous quasars (powered by more massive SMBHs) is probably tied to the well-known mass–metallicity relation among ordinary galaxies. This correlation and the absence of a trend with redshift indicate that mass is a more important parameter in the evolution than the time elapsed since the big bang.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Arav, N., et al. 2001, ApJ, 561, 118CrossRefGoogle Scholar
Arav, N., Kaastra, J., Kriss, G. A., Korista, K. T., Gabel, J., & Proga, D. 2005, ApJ, 620, 665CrossRefGoogle Scholar
Arav, N., et al. 2007, ApJ, 658, 829CrossRefGoogle Scholar
Beelen, A., et al. 2006, ApJ, 642, 694CrossRefGoogle Scholar
Cox, P., et al. 2005, ESA-SP, 577, 115Google Scholar
Dhanda, N., Baldwin, J. A., Bentz, M. C., & Osmer, P. S. 2007, ApJ, 658, 804CrossRefGoogle Scholar
Di Matteo, T., Croft, R. A. C., Springel, V., & Hernquist, L. 2004, ApJ, 610, 80CrossRefGoogle Scholar
Dietrich, M., et al. 2003, ApJ, 589, 722CrossRefGoogle Scholar
Dietrich, M. & Hamann, F. 2008, RMxAC, 32, 65Google Scholar
Dong, X., Wang, J., Wang, T., Wang, H., Fan, X., Zhou, H., & Yuan, W. 2009, arXiv:0903.5020Google Scholar
Gabel, J. R., Arav, N., & Kim, T.-S. 2006, ApJ, 646, 742CrossRefGoogle Scholar
Gabel, J. R., et al. 2005, ApJ, 623, 85CrossRefGoogle Scholar
Granato, G. L., De Zotti, G., Silva, L., Bressan, A., & Danese, L. 2004, ApJ, 600, 580CrossRefGoogle Scholar
Groves, B. A., Heckman, T. M., & Kauffmann, G. 2006, MNRAS, 371, 1559CrossRefGoogle Scholar
Hamann, F., Warner, C., Dietrich, M., & Ferland, G. 2007, ASP-CS, 373, 653Google Scholar
Hamann, F., Dietrich, M., Sabra, B. M., & Warner, C. 2004, COAS, 440Google Scholar
Hamann, F., Korista, K. T., Ferland, G. J., Warner, C., & Baldwin, J. 2002, ApJ, 564, 592CrossRefGoogle Scholar
Hamann, F. & Ferland, G. 1999, ARAA, 37, 487CrossRefGoogle Scholar
Hamann, F. 1998, ApJ, 500, 798CrossRefGoogle Scholar
Hamann, F. & Sabra, B. 2004, ASP-CS, 311, 203Google Scholar
Hopkins, A. M. & Beacom, J. F. 2006, ApJ, 651, 142CrossRefGoogle Scholar
Hopkins, P. F., et al. 2005, ApJ, 630, 705CrossRefGoogle Scholar
Jiang, L., et al. 2007, AJ, 134, 1150CrossRefGoogle Scholar
Juarez, Y., et al. 2009, AA, 494, L25CrossRefGoogle Scholar
Kauffmann, G. & Haehnelt, M. 2000, MNRAS, 311, 576CrossRefGoogle Scholar
Li, Y., et al. 2007, ApJ, 665, 187CrossRefGoogle Scholar
Nagao, T., Maiolino, R., & Marconi, A. 2006, AA, 447, 863CrossRefGoogle Scholar
Nagao, T., Marconi, A., & Maiolino, R. 2006, AA, 447, 157CrossRefGoogle Scholar
Netzer, H., et al. 2007, ApJ, 666, 806CrossRefGoogle Scholar
Richards, G. T., et al. 2006, AJ, 131, 2766CrossRefGoogle Scholar
Rupke, D. S. N., Veilleux, S., & Baker, A. J. 2008, ApJ, 674, 172CrossRefGoogle Scholar
Sanders, D. B., Soifer, B. T., Elias, J. H., Neugebauer, G., & Matthews, K. 1988, ApJ, 328, L35CrossRefGoogle Scholar
Silverman, J. D., et al. 2005, ApJ, 624, 630CrossRefGoogle Scholar
Simon, L. E., & Hamann, F. 2009, submitted to MNRASGoogle Scholar
Spolaor, M., Proctor, R. N., Forbes, D. A., & Couch, W. J. 2009, ApJ, 691, L138CrossRefGoogle Scholar
Trager, S. C., Faber, S. M., Worthey, G., & González, J. J. 2000, AJ, 120, 165CrossRefGoogle Scholar
Tremaine, S., et al. 2002, ApJ, 574, 740CrossRefGoogle Scholar
Veilleux, S., et al. 2009, ApJS, 182, 628CrossRefGoogle Scholar
Wang, R., et al. 2008, ApJ, 687, 848CrossRefGoogle Scholar
Warner, C., Hamann, F., & Dietrich, M. 2003, ApJ, 596, 72CrossRefGoogle Scholar