Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T17:28:43.259Z Has data issue: false hasContentIssue false

Genotype–environment interactions for growth and carcass traits in different pig breeds kept under conventional and organic production systems

Published online by Cambridge University Press:  03 December 2009

H. Brandt*
Affiliation:
Institute of Animal Breeding and Genetics, University Giessen, Ludwigstr. 21B, 35390 Giessen, Germany
D. N. Werner
Affiliation:
Institute of Animal Breeding and Genetics, University Giessen, Ludwigstr. 21B, 35390 Giessen, Germany
U. Baulain
Affiliation:
Institute of Farm Animal Genetics, Department of Breeding and Genetic Resources, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535 Neustadt, Germany
W. Brade
Affiliation:
Chamber of Agriculture of Lower Saxony, Johannsenstr. 10, 30159 Hannover, Germany
F. Weissmann
Affiliation:
Institute of Organic Farming, Johann Heinrich von Thünen-Institut (vTI), Trenthorst 32, 23847 Westerau, Germany
Get access

Abstract

The demand for special breeding programmes for organic pig meat production is based on the assumption that pigs kept under organic conditions need different biological properties compared with conventionally kept pigs in order to achieve a good performance. This would mean that genotype–environment interactions exist. Therefore, 682 pigs of seven different genotypes were tested for growth performance and carcass quality under conventional and organic environments at two testing stations to verify genotype–environment interactions. All genotypes achieved significantly better results within the conventional environment and there were significant interactions between genotype and environment for all the criteria of growth performance and carcass quality. The interactions are mainly caused by varying differences between organic and conventional systems within genotypes, but for all traits, except weight gain, no major shift of the ranking order within environment between genotypes. Although statistically significant genotype–environment interactions exist, the modern genotypes selected under conventional conditions are also superior to indigenous breeds under organic conditions in economically important traits. Hence, it can be concluded from these results that no special breeding programme is necessary for organic production systems.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellof, G, Gaul, C, Fischer, K, Lindermeyer, H 1998. Der Einsatz von Grassilage in der Schweinemast. Zuechtungskunde 70, 372388.Google Scholar
Calus, MPL, Groen, AF, De Jong, G 2002. Genotype × environment interaction for protein yield in dutch dairy cattle as quantified by different models. Journal of Dairy Science 85, 31153123.CrossRefGoogle ScholarPubMed
De Jong, G 1990. Quantitative genetics of reaction norms. Journal of Evolutionary Biology 3, 447468.CrossRefGoogle Scholar
EC Regulation 1804/1999 (1999): Verordnung zur Einbeziehung der tierischen Erzeugung in den Geltungsbereich der Verordnung (EWG) Nr. 2092/91 über den ökologischen Landbau und die entsprechende Kennzeichnung der landwirtschaftlichen Erzeugnisse und Lebensmittel. Amtsblatt der Europäischen Gemeinschaften L 222/1 vom 24.08.1999.Google Scholar
Falconer, DS, Mackay, TF 1996. Introduction to quantitative genetics. Longman Group, New York.Google Scholar
Fikse, WF, Rekaya, R, Weigel, KA 2003. Assessment of environmental descriptors for studying genotype by environment interaction. Livestock Production Science 82, 223231.CrossRefGoogle Scholar
Hansson, I, Hamilton, C, Ekman, T, Forslund, K 2000. Carcass quality in certified organic production compared with conventional livestock production. Journal of Veterinary Medicine Series B 47, 111120.CrossRefGoogle ScholarPubMed
Heyer, A 2004. Performance, carcass and meat quality in pigs. Department of Food Science, Swedish University of Agricultural Sciences, Uppsala.Google Scholar
Kelly, HRC, Browning, HM, Day, JEL, Martins, A, Pearce, GP, Stopes, C, Edwards, SA 2007. Effect of breed type, housing and feeding system on performance of growing pigs managed under organic conditions. Journal of the Science of Food and Agriculture 87, 27942800.CrossRefGoogle Scholar
Loeser, R, Deerberg, F 2004. Oekologische Schweineproduktion: Struktur, Entwicklung, Probleme, politischer Handlungsbedarf. Retrieved August 5, 2008, from http://orgprints.org/5164.Google Scholar
Millet, S, Hesta, M, Seynaeve, M, Ongenae, E, De Smet, S, Debraekeleer, J, Janssens, GPJ 2004. Performance, meat and carcass traits of fattening pigs with organic versus conventional housing and nutrition. Livestock Production Science 87, 109119.CrossRefGoogle Scholar
Millet, S, Ongenae, E, Hesta, M, Seynaeve, M, De Smet, S, Janssens, GPJ 2006. The feeding of ad libitum dietary protein to organic growing-finishing pigs. The Veterinary Journal 171, 483490.CrossRefGoogle ScholarPubMed
Millet, S, Raes, K, Van Den Broeck, W, De Smet, S, Janssens, GPJ 2005. Performance and meat quality of organically versus conventionally fed and housed pigs from weaning till slaughtering. Meat Science 69, 335341.CrossRefGoogle ScholarPubMed
Moehn, S, Gillis, AM, Mougham, PJ, De Lange, CFM 2000. Influence of dietary lysine and energy intakes on body protein deposition and lysine utilization in the growing pig. Journal of Animal Science 78, 15101519.CrossRefGoogle Scholar
Nauta, WJ, Veerkamp, RF, Brascamp, EW, Bovenhuis, H 2006. Genotype by environment interaction for milk production traits between organic and conventional dairy cattle production in the Netherlands. Journal of Dairy Science 89, 27292737.CrossRefGoogle ScholarPubMed
Reuter, K 2007. Eine eigenstaendige Tierzucht fuer den Oeko-Landbau – jetzt. Oekologie & Landbau 142, 1416.Google Scholar
SAS Institute 2000. SAS/STAT Users Guide, Version 8.1. SAS Institute, Cary, NC, USA.Google Scholar
Schmid, W 1987. Zur Vermarktung von Schlachtschweinen – Ausschlachtung und Einflussgroessen. Bayer Landw Jahrb, Sonderheft 1.Google Scholar
Simianer, H, Augsten, F, Bapst, B, Franke, E, Maschka, R, Reinhardt, F, Schmidtko, J, Stricker, C 2007. Oekologische Milchviehzucht: Entwicklung und Bewertung zuechterischer Ansaetze unter Beruecksichtigung der Genotyp × Umwelt-Interaktion und Schaffung eines Informationssystems für nachhaltige Zuchtstrategien. Retrieves August 5, 2008, from http://orgprints.org/11222Google Scholar
Sundrum, A, Buetfering, L, Henning, M, Hoppenbrock, KH 2000. Effects of on-farm diets for organic pig production on performance and carcass quality. Journal of Animal Science 78, 11991205.CrossRefGoogle ScholarPubMed
Whittemore, CT, Green, DM, Knap, PW 2001. Technical review of the energy and protein requirements of growing pigs: food intake. Animal Science 73, 317.CrossRefGoogle Scholar
Wiese, M, Tholen, E, Baulain, U, Höreth, R 2004. Estimation of the carcass composition of station tested pigs. Book of Abstracts/Annual Meeting of the European Association for Animal Production (ed. Y van der Honing), 10:272. Wageningen Academic Publishers (Abstract).Google Scholar
Wood, JD, Nute, GR, Richardson, RI, Whittington, FM, Southwood, O, Plastow, G, Mansbridge, R, Da Costa, N, Chang, KC 2004. Effects of breed, diet and muscle on fat deposition and eating quality in pigs. Meat Science 67, 651667.CrossRefGoogle ScholarPubMed