Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-08T00:25:56.426Z Has data issue: false hasContentIssue false

Biological, ultrastructural effect and subcellular localization of aromatic diamidines in Trypanosoma cruzi

Published online by Cambridge University Press:  21 September 2009

D. G. J. BATISTA
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 962 RJ, Brazil
M. G. O. PACHECO
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 962 RJ, Brazil
A. KUMAR
Affiliation:
Department of Chemistry, Georgia State University, Atlanta, 30302Geogia, USA
D. BRANOWSKA
Affiliation:
Department of Chemistry, Georgia State University, Atlanta, 30302Geogia, USA
M. A. ISMAIL
Affiliation:
Department of Chemistry, Georgia State University, Atlanta, 30302Geogia, USA
L. HU
Affiliation:
Department of Chemistry, Georgia State University, Atlanta, 30302Geogia, USA
D. W. BOYKIN
Affiliation:
Department of Chemistry, Georgia State University, Atlanta, 30302Geogia, USA
M. N. C. SOEIRO*
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 962 RJ, Brazil
*
*Corresponding author: Laboratory of Cellular Biology, Av. Brasil, 4365, Manguinhos, 962Rio de Janeiro, Brazil. Tel: +055 21 2598 4534. Fax: +055 21 2598 4577. E-mail: soeiro@ioc.fiocruz.br

Summary

No vaccines or safe chemotherapy are available for Chagas disease. Pentamidine and related di-cations are DNA minor groove-binders with broad-spectrum anti-protozoal activity. Therefore our aim was to evaluate the in vitro efficacy of di-cationic compounds – DB1645, DB1582, DB1651, DB1646, DB1670 and DB1627 – against bloodstream trypomastigotes (BT) and intracellular forms of Trypanosoma cruzi. Cellular targets of these compounds in treated parasites were also analysed by fluorescence and transmission electron microscopy (TEM). DB1645, DB1582 and DB1651 were the most active against BT showing IC50 values ranging between 0·15 and 6·9 μm. All compounds displayed low toxicity towards mammalian cells and DB1645, DB1582 and DB1651 were also the most effective against intracellular parasites, with IC50 values ranging between 7·3 and 13·3 μm. All compounds localized in parasite nuclei and kDNA (with greater intensity in the latter structure), and DB1582 and DB1651 also concentrated in non-DNA-containing cytoplasmic organelles possibly acidocalcisomes. TEM revealed alterations in mitochondria and kinetoplasts, as well as important disorganization of microtubules. Our data provide further information regarding the activity of this class of compounds upon T. cruzi which should aid future design and synthesis of agents that could be used for Chagas disease therapy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, M. P. and Gilbert, I. H. (2006). Targeting of toxic compounds to the trypanosome's interior. Advances in Parasitology 63, 125133. doi:10.1016/S0065-308X(06)63002-9.Google Scholar
Bray, P. G., Barrett, M. P., Ward, S. A. and de Koning, H. P. (2003). Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends in Parasitology 19, 232239. doi:10.1016/S1471-4922(03)00069-2.Google Scholar
Carter, N. S., Berger, B. J. and Fairlamb, A. H. (1995). Uptake of diamidine drugs by the P2 nucleoside transporter in melarsen-sensitive and -resistant Trypanosoma brucei brucei. The Journal of Biological Chemistry 270, 2815328157.Google Scholar
Chagas, C. (1909). Nova tripanossomíase humana: Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., agente etiológico de nova entidade mórbida do homem. Memórias do Instituto Oswaldo Cruz 1, 159218.Google Scholar
Checchi, F. and Barrett, M. P. (2008). African sleeping sickness. British Medical Journal 336, 679700.Google Scholar
Coura, J. R. and De Castro, S. L. (2002). A critical review on Chagas disease chemotherapy. Memórias do Instituto Oswaldo Cruz 97, 3–24. doi: 10.1590/S0074-02762002000100001.Google Scholar
Cunha-Neto, E., Bilate, A. M., Hyland, K. V., Fonseca, S. G., Kalil, J. and Engman, D. M. (2006). Induction of cardiac autoimmunity in Chagas heart disease: a case for molecular mimicry. Autoimmunity 39, 4154. doi: 10.1080/08916930500485002.Google Scholar
Dantas, A. P., Barbosa, H. S. and De Castro, S. L. (2003). Biological and ultrastructural effects of the anti-microtubule agent taxol against Trypanosoma cruzi. Journal of Submicroscopic Cytology and Pathology 35, 287294.Google Scholar
de Koning, H. P. (2001). Uptake of pentamidine in Trypanosoma brucei brucei is mediated by three distinct transporters: implications for cross-resistance with arsenicals. Molecular Pharmacology 59, 586592.Google Scholar
De Souza, E. M., Lansiaux, A., Bailly, C., Wilson, W. D., Hu, Q., Boykin, D. W., Batista, M. M., Araújo-Jorge, T. C. and Soeiro, M. N. (2004). Phenyl substitution of furamidine markedly potentiates its antiparasitic activity against Trypanosoma cruzi and Leishmania amazonensis. Biochemical Pharmacology 68, 593600. doi:10.1016/j.bcp.2004.04.019.CrossRefGoogle ScholarPubMed
De Souza, E. M., Oliveira, G. M., Boykin, D. W., Kumar, A., Hu, Q. and Soeiro, M. N. C. (2006). Trypanocidal activity of the phenyl-substituted analogue of fumidine DB569 against Trypanosoma cruzi infection in vivo. Journal of Antimicrobial Chemotherapy 58, 610614. doi:10.1093/jac/dkl259.Google Scholar
De Souza, E. M., Oliveira, G. M. and Soeiro, M. N. C. (2007). Electrocardiographic finding in acutely and chronically Trypanosoma cruzi-infected mice treated by a phenyl-substituted analogue of Furamidine DB569. Drug Target Insight 2, 6169.Google Scholar
de Souza, W. (2008). An introduction to the structural organization of parasitic protozoa. Current Pharmaceutical Design 14, 822838.Google Scholar
Dias, J. C. (2007). Southern Cone Initiative for the elimination of domestic populations of Triatoma infestans and the interruption of transfusion Chagas disease: historical aspects, present situation, and perspectives. Memórias do Instituto Oswaldo Cruz 102, 1118. doi: 10.1590/S0074-02762007005000092.Google Scholar
Docampo, R., Scott, D. A., Vercesi, A. E. and Moreno, S. N. (1995). Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. The Biochemical Journal 310, 10051012.Google Scholar
Filardi, L. S. and Brener, Z. (1987). Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas Disease. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 755759.Google Scholar
Gascón, J., Albajar, P., Cañas, E., Flores, M., GómezI., PRAT. J. I., PRAT. J., Herrera, R. N., Lafuente, C. A., Luciardi, H. L., Moncayo, A., Molina, L., Muñoz, J., Puente, S., Sanz, G., Treviño, B. and Sergio-Salles, X. (2007). Diagnosis, management and treatment of chronic Chagas' heart disease in areas where Trypanosoma cruzi infection is not endemic. Revista Española de Cardiología 60, 285293.Google Scholar
Guerri-Guttenberg, R. A., Grana, D. R., Ambrosio, G. and Milei, J. (2008). Chagas cardiomyopathy: Europe is not spared! European Heart Journal 29, 25872591. doi:10.1093/eurheartj/ehn424.Google Scholar
Higuchi, M. L., Benvenuti, L. A., Martins Reis, M. and Metzger, M. (2003). Pathophysiology of the heart in Chagas' disease: current status and new developments. Cardiovascular Research 60, 96–107. doi:10.1016/S0008-6363(03)00361-4.Google Scholar
Ismail, M. A., Arafa, R. K., Wenzler, T., Brun, R., Tanious, F. A., Wilson, W. D. and Boykin, D. W. (2008). Synthesis and antiprotozoal activity of novel bis-benzamidino imidazo[1,2-a]pyridines and 5,6,7,8-tetrahydro-imidazo[1,2-a]pyridines. Bioorganic & Medicinal Chemistry 16, 683691. doi:10.1016/j.bmc.2007.10.042.Google Scholar
Marin-Neto, J. A., Simões, M. V. and Sarabanda, A. V. (1999). Chagas' heart disease. Arquivos Brasileiros de Cardiologia 72, 247280.Google Scholar
Marin-Neto, J. A., Rassi, A. Jr., Morillo, C. A., Avezum, A., Connolly, S. J., Sosa-Estani, S., Rosas, F. and Yusuf, S. BENEFIT Investigators (2008). Rationale and design of a randomized placebo-controlled trial assessing the effects of etiologic treatment in Chagas' cardiomyopathy: the BENznidazole Evaluation For Interrupting Trypanosomiasis (BENEFIT). American Heart Journal 156, 3743. doi:10.1016/j.ahj.2008.04.001.Google Scholar
Mathis, A. M., Holman, J. L., Sturk, L. M., Ismail, M. A., Boykin, D. W., Tidwell, R. R. and Hall, J. E. (2006). Accumulation and intracellular distribution of antitrypanosomal diamidine compounds DB75 and DB820 in African trypanosomes. Antimicrobial Agents and Chemotherapy 50, 21852191. doi: 10.1128/AAC.00192-06.Google Scholar
Mathis, A. M., Bridges, A. S., Ismail, M. A., Kumar, A., Francesconi, I., Anbazhagan, M., Hu, Q., Tanious, F. A., Wenzler, T., Saulter, J., Wilson, W. D., Brun, R., Boykin, D. W., Tidwell, R. R. and Hall, J. E. (2007). Diphenyl furans and aza analogs: effects of structural modification on in vitro activity, DNA binding, and accumulation and distribution in trypanosomes. Antimicrobial Agents and Chemotherapy 51, 28012810. doi: 10.1128/AAC.00005-07.Google Scholar
Meirelles, M. N., Araujo-Jorge, T. C., Miranda, C. F., De Souza, W. and Barbosa, H. S. (1986). Interaction of Trypanosoma cruzi with heart muscle cells: ultrastructural and cytochemical analysis of endocytic vacuole formation and effect upon myogenesis in vitro. European Journal of Cell Biology 41, 198206.Google ScholarPubMed
Menna-Barreto, R. F., Salomão, K., Dantas, A. P., Santa-Rita, R. M., Soares, M. J., Barbosa, H. S. and de Castro, S. L. (2009). Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 40, 157168. doi:10.1016/j.micron.2008.08.003.Google Scholar
Milei, J., Guerri-Guttenberg, R. A., Grana, D. R. and Storino, R. (2009). Prognostic impact of Chagas disease in the United States. American Heart Journal 157, 2229. doi:10.1016/j.ahj.2008.08.024.Google Scholar
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation in cytotoxicity assays. Journal of Immunological Methods 65, 5563.Google Scholar
Pacheco, M. G., da Silva, C. F., de Souza, E. M., Batista, M. M., da Silva, P. B., Kumar, A., Stephens, C. E., Boykin, D. W. and Soeiro, M. N. C. (2009). Trypanosoma cruzi: activity of heterocyclic cationic molecules in vitro. Experimental Parasitology 123, 7380. doi:10.1016/j.exppara.2009.06.004.Google Scholar
Rocha, M. O., Teixeira, M. M. and Ribeiro, A. L. (2007). An update on the management of Chagas cardiomiopathy. Expert Review of Anti-Infective Therapy 5, 727743. doi:10.1586/14787210.5.4.727Google Scholar
Rodrigues, J. C. and de Souza, W. (2008). Ultrastructural alterations in organelles of parasitic protozoa induced by different classes of metabolic inhibitors. Current Pharmaceutical Design 14, 925938.Google Scholar
Rodriguez-Morales, A. J., Benitez, J. A., Tellez, I. and Franco-Paredes, C. (2008). Chagas disease screening among Latin American immigrants in non-endemic settings. Travel Medicine and Infectious Disease 6, 162163.Google Scholar
Santa-Rita, R. M., Barbosa, H. S. and de Castro, S. L. (2006). Ultrastructural analysis of edelfosine-treated trypomastigotes and amastigotes of Trypanosoma cruzi. Parasitology Research 100, 187200. doi: 10.1007/s00436-006-0250-8.Google Scholar
Silva, C. F., Batista, M. M., Mota, R. A., de Souza, E. M., Stephens, C. E., Som, P., Boykin, D. W. and Soeiro, M. N. (2007 a). Activity of ‘reversed’ diamidines against Trypanosoma cruzi in vitro. Biochemical Pharmacology 73, 19391946. doi:10.1016/j.bcp.2007.03.020.Google Scholar
Silva, C. F., Meuser, M. B., De Souza, E. M., Meirelles, M. N., Stephens, C. E., Som, P., Boykin, D. W. and Soeiro, M. N. (2007 b). Cellular effects of reversed amidines on Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy 51, 38033809. doi: 10.1128/AAC.00047-07.Google Scholar
Silva, C. F., Batista, M. M., Batista, D. G., de Souza, E. M., da Silva, P. B., de Oliveira, G. M., Meuser, A. S., Shareef, A. R., Boykin, D. W. and Soeiro, M. N. (2008). In vitro and in vivo studies of the trypanocidal activity of a diarylthiophene diamidine against Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy 52, 33073314. doi:10.1128/AAC.00038-08.Google Scholar
Soeiro, M. N. C. and De Castro, S. L. (2009). Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opinion on Therapeutic Targets 13, 105121. doi:10.1517/14728220802623881.Google Scholar
Soeiro, M. N. C., De Castro, S. L., De Souza, E. M., Batista, D. G. J., Silva, C. F. and Boykin, D. W. (2008). Diamidine activity against trypanosomes: the state of the art. Current Molecular Pharmacology 1, 151161.Google Scholar
Soeiro, M. N. C., De Souza, E. M., Stephens, C. E. and Boykin, D. W. (2005). Aromatic diamidines as antiparasitic agents. Expert Opinion on Investigational Drugs 14, 957972. doi:10.1517/13543784.14.8.957.CrossRefGoogle ScholarPubMed
Souto-Padron, T., Cunha e Silva, N. L. and de Souza, W. (1993). Acetylated alpha-tubulin in Trypanosoma cruzi: immunocytochemical localization. Memórias do Instituto Oswaldo Cruz 88, 517528.Google Scholar
Teixeira, A. R., Nitz, N., Guimaro, M. C., Gomes, C. and Santos-Buch, C. A. (2006). Chagas disease. Journal of Postgraduate Medicine 82, 788798.Google Scholar
Vercesi, A. E., Moreno, S. N. and Docampo, R. (1994). Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. The Biochemical Journal 304, 227233.Google Scholar
Werbovetz, K. (2006). Diamidines as antitrypanosomal, antileishmanial and antimalarial agents. Current Opinion in Investigational Drugs 7, 147157.Google Scholar
Wilson, W. D., Tanious, F. A. and Mathis, A. (2008). Antiparasitic compounds that target DNA. Biochimie 90, 999–1014. doi:10.1016/j.biochi.2008.02.017.Google Scholar