Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T11:06:14.084Z Has data issue: false hasContentIssue false

A new method to measure stellar mass-loss rates

Published online by Cambridge University Press:  18 January 2010

Jason S. Kalirai*
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA email: jkalirai@stsci.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The total stellar mass loss that a star suffers through post-main-sequence evolution is of vital importance to understand its subsequent evolution. The mass-loss rate along the first-ascent red-giant branch alone determines the upper red-giant-branch luminosity function and horizontal-branch morphology. The distribution of stars in these phases directly affects our interpretation of the integrated colors of distant galaxies, and is therefore of fundamental importance for galaxy formation and evolution studies in the higher-redshift Universe. Yet, these mass-loss rates, especially as a function of age and metallicity, are very poorly constrained in current models. I present new constraints on this field based on imaging and spectroscopic observations of the end products from this evolution, white dwarfs. By studying the mass distribution of these dead stars in nearby star clusters with a range of (known) ages and metallicities, we can directly constrain the mass-loss rates of stars across a range of environments. These observations directly impact several fields in astrophysics, including our knowledge of the enrichment of the interstellar medium, our ability to construct population synthesis models to interpret galaxy colors and the general interpretation of the sources and processes responsible for the observed ultraviolet upturn in elliptical galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bensby, T., et al. 2009, IAU Symp. No. 265, in press (arXiv:0908.2779)Google Scholar
Bergeron, P., Saffer, R. A., & Liebert, J. 1992, ApJ, 394, 228CrossRefGoogle Scholar
Bergeron, P., Liebert, J., & Fulbright, M. S. 1995, AJ, 444, 810CrossRefGoogle Scholar
Bressan, A., Chiosi, C., & Fagotto, F. 1994, ApJS, 94 63CrossRefGoogle Scholar
Burstein, D., Bertola, F., Buson, L. M., Faber, S. M., & Lauer, T. R. 1988, ApJ, 328, 440CrossRefGoogle Scholar
Castellani, M. & Castellani, V. 1993, ApJ, 407, 649CrossRefGoogle Scholar
Catelan, M. 2007, in: Chavez, M., Bertone, E., Rosa-Gonzalez, D., and Rodríguez–Merino, L. H. (eds.), New Quests in Stellar Astrophysics II: The Ultraviolet Properties of Evolved Stellar Populations, p. 175, SpringerGoogle Scholar
Cohen, J. G., Huang, W., Udalski, A., Gould, A., & Johnson, J. A. 2008, ApJ, 682, 1029CrossRefGoogle Scholar
Cohen, J. G., Thompson, I. B., Sumi, T., Bond, I., Gould, A., Johnson, J. A., Huang, W., & Burley, G. 2009, ApJ, 699, 66CrossRefGoogle Scholar
D'Cruz, N. L., Dorman, B., Rood, R. T., & O'Connell, R. W. 1996, ApJ, 466, 359CrossRefGoogle Scholar
Dorman, B., O'Connell, R. W, & Rood, R. T. 1995, ApJ, 442, 105CrossRefGoogle Scholar
Goldberg, L. 1979, QJRAS, 20, 361Google Scholar
Gratton, R., Bragaglia, A., Carretta, E., & Tosi, M. 2006, ApJ, 642, 462CrossRefGoogle Scholar
Greggio, L. & Renzini, A. 1990, ApJ, 364, 35CrossRefGoogle Scholar
Groenewegen, M. A. T. 2006, A&A, 448, 181Google Scholar
Habing, H. J. 1996, ARA&A, 7, 97Google Scholar
Han, Z., Podsiadlowski, P., & Lynas–Gray, A. E. 2007, MNRAS, 380, 1098CrossRefGoogle Scholar
Hansen, B. M. S. 2005, ApJ, 635, 522CrossRefGoogle Scholar
Johnson, J. A., Gaudi, B. S., Sumi, T., Bond, I. A., & Gould, A. 2008, ApJ, 685, 508CrossRefGoogle Scholar
Judge, P. G. & Stencel, R. E. 1991, ApJ, 371, 357CrossRefGoogle Scholar
Kalirai, J. S., Richer, H. B., Fahlman, G. G., Cuillandre, J., Ventura, P., D'Antona, F., Bertin, E., Marconi, G. & Durrell, P. 2001a, AJ, 122, 257CrossRefGoogle Scholar
Kalirai, J. S., Richer, H. B., Fahlman, G. G., Cuillandre, J., Ventura, P., D'Antona, F., Bertin, E., Marconi, G., & Durrell, P. 2001b, AJ, 122, 266CrossRefGoogle Scholar
Kalirai, J. S., Ventura, P., Richer, H. B., Fahlman, G. G., D'Antona, F. & Marconi, G. 2001c, AJ, 122, 3239CrossRefGoogle Scholar
Kalirai, J. S., Fahlman, G. G., Richer, H. B., & Ventura, P. 2003, AJ, 126, 1402CrossRefGoogle Scholar
Kalirai, J. S., Richer, H. B., Reitzel, D., Hansen, B. M. S., Rich, R. M., Fahlman, G. G., Gibson, B. K., & von Hippel, T. 2005, ApJ (Letters), 618, L123CrossRefGoogle Scholar
Kalirai, J. S., Bergeron, P., Hansen, B. M. S., Kelson, D. D., Reitzel, D. B., Rich, R. M., & Richer, H. B. 2007, ApJ, 671, 748CrossRefGoogle Scholar
Kalirai, J. S., Hansen, B. M. S., Kelson, D. D., Reitzel, D. B., Rich, R. M., & Richer, H. B. 2008, ApJ, 676, 594CrossRefGoogle Scholar
Kalirai, J. S., Davis, D. S., Richer, H. B., Bergeron, P., Catelan, M., Hansen, B. M. S., & Rich, R. M. 2009, ApJ, 705, 408CrossRefGoogle Scholar
Kilic, M., Stanek, K. Z., & Pinsonneault, M. H. 2007, ApJ, 671, 761CrossRefGoogle Scholar
Marino, A. F., Villanova, S., Piotto, G., Milone, A. P., Momany, Y., Bedin, L. R., & Medling, A. M. 2008, A&A, 490, 625Google Scholar
O'Connell, R. W. 1999, ARA&A, 37, 603Google Scholar
Origlia, L., Valenti, E., Rich, R. M., & Ferraro, F. R. 2006, ApJ, 646, 499CrossRefGoogle Scholar
Rood, R. T. 1973, ApJ, 184, 815CrossRefGoogle Scholar
Tremblay, P.-E. & Bergeron, P. 2009, ApJ, 696, 1755CrossRefGoogle Scholar
Weidemann, V. 2000, A&A, 363, 647Google Scholar
Williams, K. A., Bolte, M., & Koester, D. 2004, ApJ (Letters), 615, L49CrossRefGoogle Scholar
Williams, K. A & Bolte, M. 2007, AJ, 133, 1490CrossRefGoogle Scholar
Williams, K. A., Bolte, M., & Koester, D. 2009, ApJ, 693, 355CrossRefGoogle Scholar
Zoccali, M., et al. 2003, A&A, 399, 931Google Scholar