Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T23:01:26.037Z Has data issue: false hasContentIssue false

Globular cluster abundances: the imprint of first-generation massive stars

Published online by Cambridge University Press:  18 January 2010

Corinne Charbonnel*
Affiliation:
Geneva Observatory, University of Geneva, 51 Chemin des Maillettes, 1290 Versoix, Switzerland email: Corinne.Charbonnel@unige.ch Laboratoire d'Astrophysique de Toulouse–Tarbes, Université de Toulouse, CNRS, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galactic globular cluster (GC) stars exhibit abundance patterns that are not shared by their field counterparts, namely the well-documented O–Na, C–N and Mg–Al anticorrelations. Recent observations provide compelling evidence that these abundance anomalies were already present in the intracluster gas from which the presently observed stars formed. The current explanation is that the gas was polluted very early in the history of the GC by material processed through H burning at high temperatures and then lost by stars more massive than the long-lived stars we still observe today. However the ‘polluters’ have not yet been unambiguously identified. Most studies have focused on asymptotic giant brach stars, but rotating massive stars present an interesting alternative. Here, we critically analyse the pros and cons of both potential stellar polluters. We discuss the constraints that the observational data provide on stellar nucleosynthesis and hydrodynamics, as well as on the formation and early evolution of very massive star clusters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Arnould, M., Goriely, S., & Jorissen, A. 1999, A&A, 347, 572Google Scholar
Bonifacio, P., Pasquini, L., Molaro, P., Carretta, E., François, P., Gratton, R. G., James, G., Sbordone, L., Spite, F., & Zoccali, M. 2007, A&A, 470, 153Google Scholar
Carretta, E., Gratton, R. G., Lucatello, S., Bragaglia, A., & Bonifacio, P. 2005, A&A, 441, 131Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., Leone, F., Recio–Blanco, A., & Lucatello, S. 2006, A&A, 450, 523Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., Lucatello, S., & Momany, Y. 2007, A&A, 464, 927Google Scholar
Carretta, E., Bragaglia, A., Gratton, R., D'Orazi, V., & Lucatello, S. 2009a, A&A, in pressGoogle Scholar
Carretta, E., Bragaglia, A., Gratton, R., & Lucatello, S. 2009b, A&A, 505, 139Google Scholar
Charbonnel, C. 2007, in: Kerschbaum, F., Charbonnel, C. & Wing, R. F., Why Galaxies Care About AGB Stars: Their Importance as Actors and Probes, ASP Conf. Ser., Vol. 378, p. 416, San Francisco: ASPGoogle Scholar
Chiappini, C., Ekström, S., Meynet, G., Hirschi, R., Maeder, A., & Charbonnel, C. 2008, A&A (Letters), 479, L9Google Scholar
Cohen, J. G. 1978, ApJ, 223, 487CrossRefGoogle Scholar
Decressin, T., 2007, PhD Thesis, Geneva UniversityGoogle Scholar
Decressin, T., Baumgardt, H., & Kroupa, P. 2008, A&A, 492, 101Google Scholar
Decressin, T., Baumgardt, H., Kroupa, P., Meynet, G., & Charbonnel, C. 2009a, in: Mamajek, E. E., Soderblom, D. R., & Wyse, R. F. G., The Ages of Stars, Proc. IAU Symp. No. 258, p. 265CrossRefGoogle Scholar
Decressin, T., Charbonnel, C., & Meynet, G. 2007a, A&A, 475, 859 (DCM07)Google Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007b, A&A, 464, 1029 (DMCPE07)Google Scholar
Decressin, T., Charbonnel, C., Siess, L., Palacios, A., Meynet, G., & Georgy, C. 2009a, A&A, 505, 727Google Scholar
Decressin, T., Baumgardt, , Kroupa, P., Meynet, G., & Charbonnel, C. 2009b, in: Mamajek, E. E., Soderblom, D. R., & Wyse, R. F. G., The Ages of Stars, Proc. IAU Symp. No. 258, p. 265CrossRefGoogle Scholar
Decressin, T., Baumgardt, , Charbonnel, C., & Kroupa, P., in prep.Google Scholar
Denissenkov, P. A. & Denissenkova, S. N. 1990, SvA Lett., 16, 275Google Scholar
Drake, J. J., Smith, V. V., & Suntzeff, N. B. 1992, ApJ (Letters), 395, L95Google Scholar
Ekström, S., Meynet, G., Maeder, A., & Barblan, F. 2008, A&A, 478, 467Google Scholar
Gratton, R., Sneden, C., Carretta, E., & Bragaglia, A. 2000, A&A, 354, 169Google Scholar
Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385Google Scholar
Illiadis, C., D'Auria, J. M., Starrfield, S., Thompson, W.J., & Wiescher, M. 2001, ApJS, 134, 151CrossRefGoogle Scholar
Ivans, I. I., Sneden, C., Kraft, R. P., Suntzeff, N. B., Smith, V. V., Langer, G. E., & Fulbright, J. P. 1999, AJ, 118, 1273CrossRefGoogle Scholar
Langer, G. E., Hoffman, R., & Sneden, C. 1993, PASP, 105, 301Google Scholar
Langer, G. E. & Hoffman, R., 1995 PASP, 107, 1177CrossRefGoogle Scholar
Lind, K., Primas, F., Charbonnel, C., Grindahl, F., & Asplund, M. 2009, A&A, 503, 545Google Scholar
Maeder, A. & Meynet, G. 2000, ARA&A, 38, 143Google Scholar
Maeder, A. & Meynet, G. 2006, A&A (Letters), 448, L37Google Scholar
Norris, J. E., Cottrell, P. L., Freeman, K. C., & Da Costa, G. S. 1981, ApJ, 244, 205CrossRefGoogle Scholar
Norris, J. E. 2004, ApJ (Letters), 612, L25CrossRefGoogle Scholar
Osborn, W. 1971, Observatory, 91, 223Google Scholar
Pasquini, L., Bonifacio, P., Molaro, P, Francois, P, Spite, F., Gratton, R. G., Carretta, E., & Wolff, B. 2005, A&A, 441, 549Google Scholar
Peterson, R. C. 1980, ApJ (Letters), 237, L87Google Scholar
Pilachowski, C. A. 1989, in: de Strobel, G. Cayrel, Spite, M. & Evans, T. L. (eds.), The abundance spread within globular clusters, Proc. IAU JCM5, p. 1Google Scholar
Prantzos, N. & Charbonnel, C. 2006, A&A, 458, 135 (PC06)Google Scholar
Prantzos, N., Charbonnel, C., & Iliadis, C. 2007, A&A, 470, 179 (PCI07)Google Scholar
Ramirez, S. V. & Cohen, J. G. 2002, AJ, 123, 3277CrossRefGoogle Scholar
Salpeter, E. E. 1955, ApJ, 121, 161Google Scholar
Shetrone, M. D. 1996, AJ, 112, 1517Google Scholar
Sneden, C. 2005, in: Hill, V., François, P. & Primas, F. (eds.), From lithium to uranium: Element tracers of early cosmic evolution, Proc. IAU Symp. No. 228, p. 337Google Scholar
Sneden, C., Gratton, R. G., & Crocker, D. A. 1991, A&A, 246, 354Google Scholar
Spite, M., Cayrel, R., & Plez, B. 2005, A&A, 430, 655Google Scholar
Ventura, P., D'Antona, F., Mazzitelli, I., & Gratton, R. 2001, ApJ (Letters), 550, L65CrossRefGoogle Scholar
Ventura, P. & D'Antona, F. 2005a, A&A, 431, 279Google Scholar
Ventura, P. & D'Antona, F. 2008a, A&A, 479, 805Google Scholar
Yong, D., Grundahl, F., Lambert, D. L., Nissen, P. E., & Shetrone, M. D. 2003, A&A, 402, 984Google Scholar
Yong, D., Grundahl, F., Nissen, P. E., Jensen, H. R., & Lambert, D. L. 2005, A&A, 438, 875Google Scholar
Yong, D., Aoki, W., & Lambert, D. L. 2006, ApJ, 638, 1018Google Scholar
Yong, D., Grundahl, F., D'Antona, F., Karakas, A. I., Lattanzio, J. C., & Norris, J. E. 2009, ApJ (Letters), 695, L62CrossRefGoogle Scholar