Animal Conservation



Unsupervised recognition of individual tigers and snow leopards from their footprints


P.  Riordan a1c1
a1 Behavioural and Environmental Biology, Department of Biological Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK

Abstract

This study presents the testing of two unsupervised classification methods for their ability to accurately identify unknown individual tigers, Panthera tigris, and snow leopards, Panthera uncia, from their footprints. A neural-network based method, the Kohonen self-organizing map (SOM), and a Bayesian method, AutoClass, were assessed using hind footprints taken from captive animals under standardized conditions. AutoClass successfully discriminated individuals of both species from their footprints. Classification accuracy was greatest for tigers, with more misclassification of individuals occurring for snow leopards. Examination of variable influence on class formations failed to identify consistently influential measurements for either species. The self-organizing map did not provide accurate classification of individuals for either species. Results were not substantially improved by altering map dimensions nor by using principal components derived from the original data. The interpretation of resulting classifications and the importance of using such techniques in the study of wild animal populations are discussed. The need for further testing in the field is highlighted.

(Received January 2 1998)
(Accepted May 27 1998)


Correspondence:
c1 Tel: +44 (0)161 247 6325; E-mail: P.Riordan@mmu.ac.uk.