Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-27T07:23:50.124Z Has data issue: false hasContentIssue false

Zeros of differences of meromorphic functions

Published online by Cambridge University Press:  12 February 2007

WALTER BERGWEILER
Affiliation:
Mathematisches Seminar, Christian–Albrechts–Universität zu Kiel, Ludewig–Meyn–Str. 4, D-24098 Kiel, Germany. e-mail: bergweiler@math.uni-kiel.de
J. K. LANGLEY
Affiliation:
School of Mathematical Sciences, University of Nottingham, NG7 2RD. e-mail: jkl@maths.nott.ac.uk

Abstract

Let f be a function transcendental and meromorphic in the plane, and define g(z) by g(z) = Δf(z) = f(z + 1) − f(z). A number of results are proved concerning the existence of zeros of g(z) or g(z)/f(z), in terms of the growth and the poles of f. The results may be viewed as discrete analogues of existing theorems on the zeros of f' and f'/f.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ablowitz, M., Halburd, R. G. and Herbst, B.. On the extension of the Painlevé property to difference equations. Nonlinearity 13 (2000), 889905.Google Scholar
[2] Anderson, J. M. and Clunie, J.. Slowly growing meromorphic functions. Comment. Math. Helv. 40 (1966), 267280.CrossRefGoogle Scholar
[3] Barry, P. D.. On a theorem of Kjellberg. Quar t. J. Math. Oxford (2) 15 (1964), 179191.CrossRefGoogle Scholar
[4] Bergweiler, W. and Eremenko, A.. On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoamericana 11 (1995), 355373.Google Scholar
[5] Chiang, Y. M. and Feng, S. J.. On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane. Ramanujan J., to appear.Google Scholar
[6] Clunie, J., Eremenko, A. and Rossi, J.. On equilibrium points of logarithmic and Newtonian potentials. J. London Math. Soc. (2) 47 (1993), 309320.CrossRefGoogle Scholar
[7] Eremenko, A., Langley, J. K. and Rossi, J.. On the zeros of meromorphic functions of the form . J. Anal. Math. 62 (1994), 271286.Google Scholar
[8] Gol'dberg, A. A. and Ostrowski, I. V.. Distribution of Values of Meromorphic Functions (Nauka, 1970).Google Scholar
[9] Gundersen, G.. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J. London Math. Soc. (2) 37 (1988), 88104.CrossRefGoogle Scholar
[10] Halburd, R. G. and Korhonen, R.. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314 (2006), 477487.Google Scholar
[11] Halburd, R. G. and Korhonen, R.. Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math., to appear.Google Scholar
[12] Hayman, W. K.. Slowly growing integral and subharmonic functions. Comment. Math. Helv. 34 (1960), 7584.Google Scholar
[13] Hayman, W. K.. Meromorphic Functions (Oxford at the Clarendon Press, 1964).Google Scholar
[14] Hayman, W. K.. The local growth of power series: a survey of the Wiman–Valiron method. Canad. Math. Bull. 17 (1974), 317358.Google Scholar
[15] Hayman, W. K.. Subharmonic Functions Vol. 2 (Academic Press, 1989).Google Scholar
[16] Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J. and Tohge, K.. Complex difference equations of Malmquist type. Comput. Methods Funct. Theory 1 (2001), 2739.Google Scholar
[17] Hinchliffe, J. D.. The Bergweiler–Eremenko theorem for finite lower order. Results. Math. 43 (2003), 121128.Google Scholar
[18] Ishizaki, K. and Yanagihara, N.. Wiman–Valiron method for difference equations. Nagoya Math. J. 175 (2004), 75102.Google Scholar
[19] Jank, G. and Volkmann, L.. Einführung in die Theorie der Ganzen und Meromorphen Funktionen mit Anwendungen auf Differentialgleichungen (Birkhäuser, 1985).Google Scholar
[20] Miles, J. and Rossi, J.. Linear combinations of logarithmic derivatives of entire functions with applications to differential equations. Pacific J. Math. 174 (1996), 195214.Google Scholar
[21] Tsuji, M.. Potential Theory in Modern Function Theory (Maruzen, 1959).Google Scholar
[22] Valiron, G.. Lectures on the General Theory of Integral Functions (Edouard Privat, Toulouse, 1923).Google Scholar
[23] Whittaker, J. M.. Interpolatory Function Theory. Cambridge Tracts in Mathematics and Mathematical Physics no. 33 (Cambridge University Press, 1935).Google Scholar