Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-17T13:10:12.005Z Has data issue: false hasContentIssue false

Oscillatory motion and wake instability of freely rising axisymmetric bodies

Published online by Cambridge University Press:  05 February 2007

PEDRO C. FERNANDES
Affiliation:
Institut de Mécanique des Fluides, UMR 5502 CNRS-INP-UPS, Allée du Prof. Camille Soula, 31400 Toulouse, Francerisso@imft.fr, ern@imft.fr, magnau@imft.fr
FRÉDÉRIC RISSO
Affiliation:
Institut de Mécanique des Fluides, UMR 5502 CNRS-INP-UPS, Allée du Prof. Camille Soula, 31400 Toulouse, Francerisso@imft.fr, ern@imft.fr, magnau@imft.fr
PATRICIA ERN
Affiliation:
Institut de Mécanique des Fluides, UMR 5502 CNRS-INP-UPS, Allée du Prof. Camille Soula, 31400 Toulouse, Francerisso@imft.fr, ern@imft.fr, magnau@imft.fr
JACQUES MAGNAUDET
Affiliation:
Institut de Mécanique des Fluides, UMR 5502 CNRS-INP-UPS, Allée du Prof. Camille Soula, 31400 Toulouse, Francerisso@imft.fr, ern@imft.fr, magnau@imft.fr

Abstract

This paper reports on an experimental study of the motion of freely rising axisym- metric rigid bodies in a low-viscosity fluid. We consider flat cylinders with height h smaller than the diameter d and density ρb close to the density ρf of the fluid. We have investigated the role of the Reynolds number based on the mean rise velocity um in the range 80 ≤ Re = umd/ν ≤ 330 and that of the aspect ratio in the range 1.5 ≤ χ = d/h ≤ 20. Beyond a critical Reynolds number, Rec, which depends on the aspect ratio, both the body velocity and the orientation start to oscillate periodically. The body motion is observed to be essentially two-dimensional. Its description is particularly simple in the coordinate system rotating with the body and having its origin fixed in the laboratory; the axial velocity is then found to be constant whereas the rotation and the lateral velocity are described well by two harmonic functions of time having the same angular frequency, ω. In parallel, direct numerical simulations of the flow around fixed bodies were carried out. They allowed us to determine (i) the threshold, Recf1(χ), of the primary regular bifurcation that causes the breaking of the axial symmetry of the wake as well as (ii) the threshold, Recf2(χ), and frequency, ωf, of the secondary Hopf bifurcation leading to wake oscillations. As χ increases, i.e. the body becomes thinner, the critical Reynolds numbers, Recf1 and Recf2, decrease. Introducing a Reynolds number Re* based on the velocity in the recirculating wake makes it possible to obtain thresholds and that are independent of χ. Comparison with fixed bodies allowed us to clarify the role of the body shape. The oscillations of thick moving bodies (χ < 6) are essentially triggered by the wake instability observed for a fixed body: Rec(χ) is equal to Recf1(χ) and ω is close to ωf. However, in the range 6 ≤ χ ≤ 10 the flow corrections induced by the translation and rotation of freely moving bodies are found to be able to delay the onset of wake oscillations, causing Rec to increase strongly with χ. An analysis of the evolution of the parameters characterizing the motion in the rotating frame reveals that the constant axial velocity scales with the gravitational velocity based on the body thickness, , while the relevant length and velocity scales for the oscillations are the body diameter d and the gravitational velocity based on d, , respectively. Using this scaling, the dimensionless amplitudes and frequency of the body's oscillations are found to depend only on the modified Reynolds number, Re*; they no longer depend on the body shape.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, A., Pesavento, U. & Wang, Z. J. 2005a Unsteady aerodynamics of fluttering and tumbling plates. J. Fluid Mech. 541, 6590.CrossRefGoogle Scholar
Andersen, A., Pesavento, U. & Wang, Z. J. 2005b Analysis of transitions between fluttering, tumbling and steady descent of falling cards. J. Fluid Mech. 541, 91104.CrossRefGoogle Scholar
Aybers, N. M. & Tapucu, A. 1969 The motion of gas bubbles rising through a stagnant liquid. Wärme- und Stoffübertragung 2, 118128.CrossRefGoogle Scholar
Belmonte, A., Eisenberg, H. & Moses, E. 1998 From flutter to tumble: inertial drag and Froude similarity in falling paper. Phys. Rev. Lett. 81, 345348.CrossRefGoogle Scholar
Cid, E. & Gardelle, F. 2005 Manuel d'utilisation du logiciel PIVIS. Tech. Rep. Institut de Mécanique des Fluides de Toulouse.Google Scholar
Ellingsen, K. & Risso, F. 2001 On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. J. Fluid Mech. 440, 235268.CrossRefGoogle Scholar
Fernandes, P. C., Ern, P., Risso, F. & Magnaudet, J. 2005 On the zigzag dynamics of freely moving axisymmetric bodies. Phys. Fluids 17, 098107.CrossRefGoogle Scholar
Field, S., Klaus, M., Moore, M. & Nori, F. 1997 Chaotic dynamics of falling disks. Nature 388, 252254.CrossRefGoogle Scholar
Ghidersa, B. & Dusek, J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423, 233269.CrossRefGoogle Scholar
Jenny, M., Dusek, J. & Bouchet, G. 2003 Nonvertical ascension or fall of a free sphere in a Newtonian fluid. Phys. Fluids 15, L9L12.CrossRefGoogle Scholar
Jenny, M., Dusek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending in a Newtonian fluid. J. Fluid Mech. 508, 201239.CrossRefGoogle Scholar
Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.CrossRefGoogle Scholar
Jones, M. A. & Shelley, M. J. 2005 Falling cards. J. Fluid Mech. 540, 393425.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Legendre, D. & Magnaudet, J. 1998 The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81126.CrossRefGoogle Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311338.CrossRefGoogle Scholar
Mahadevan, L. 1996 Tumbling of a falling card. C. R. Acad. Sci. Paris II 323, 729736.Google Scholar
Mahadevan, L., Ryu, W. & Samuel, A. 1999 Tumbling cards. Phys. Fluids 11, 13.CrossRefGoogle Scholar
Mougin, G. & Magnaudet, J. 2002 Path instability of a rising bubble. Phys. Rev. Lett. 88, 14502.CrossRefGoogle ScholarPubMed
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.CrossRefGoogle Scholar
Pesavento, U. & Wang, Z. J. 2004 Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation. Phys. Rev. Lett. 93, 144501.CrossRefGoogle ScholarPubMed
Provansal, M. & Ormières, D. 1998 Étude expérimentale de l'instabilité du sillage d'une sphère. C. R. Acad. Sci., Ser. IIb 326, 1122.Google Scholar
Saffman, P. G. 1956 On the rise of small air bubbles in water. J. Fluid Mech. 1, 249275.CrossRefGoogle Scholar
Schouveiler, L. & Provansal, M. 2002 Self-sustained oscillations in the wake of a sphere. Phys. Fluids 14, 38463854.CrossRefGoogle Scholar
Stewart, R. E. & List, R. 1983 Girational motion of disks during free fall. Phys. Fluids 26, 920927.CrossRefGoogle Scholar
Willmarth, W., Hawk, N. & Harvey, R. 1964 Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids 7, 197208.CrossRefGoogle Scholar
Wolf, A. V., Brown, M. G. & Prentiss, P. G. 1981 Concentrative properties of aqueous solutions: conversion tables. CRC Handbook of Chemistery and Physics, D-227, 61st edn. CRC Press.Google Scholar