Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-17T07:26:25.655Z Has data issue: false hasContentIssue false

Optical interferometry from the Earth

Published online by Cambridge University Press:  06 January 2010

Andreas Quirrenbach*
Affiliation:
Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, D-69117 Heidelberg, Germany email: A.Quirrenbach@lsw.uni-heidelberg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ground-based optical interferometers can perform astrometric measurements with a precision approaching 10μas between pairs of stars separated by ~10″ on the sky. These narrow-angle measurements can be used to search for extrasolar planets and to determine their orbital parameters, to characterize microlensing events, and to measure the orbits of stars around the black hole at the center of our Galaxy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bartko, H., Pfuhl, O., Eisenhauer, F., Genzel, R., Gillessen, S., Rabien, S., Abuter, R., v. Belle, G., Delplancke, F., Menardi, S., & Sahlmann, J. (2008). Study of the science capabilities of PRIMA in the Galactic Center. In Optical and Infrared Interferometry. Eds. Schöller, M., Danchi, W. C. & Delplancke, F., SPIE Vol. 7013, pp. 70134K-70134K-7CrossRefGoogle Scholar
Beaulieu, J. P., Bennett, D. P., Fouqué, P. et al. (2006). Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439, 437440Google ScholarPubMed
Boden, A. F., Shao, M., & van Buren, D. (1998). Astrometric observation of MACHO gravitational microlensing. ApJ 502, 538549Google Scholar
Boss, A. P. (1998). Astrometric signatures of giant-planet formation. Nature 393, 141143Google Scholar
Daigne, G. & Lestrade, J. F. (1999). Astrometric optical interferometry with non-evacuated delay lines. A&AS 138, 355363Google Scholar
Delplancke, F., Górski, K. M., & Richichi, A. (2001). Resolving gravitational microlensing events with long-baseline optical interferometry. Prospects for the ESO Very Large Telescope Interferometer. A&A 375, 701710Google Scholar
Delplancke, F., Leveque, S. A., Kervella, P., Glindemann, A., & D'Arcio, L. (2000). Phase-referenced imaging and micro-arcsecond astrometry with the VLTI. In Interferometry in Optical Astronomy. Ed. Quirrenbach, A. & Léna, P., SPIE Vol. 4006, pp. 365–376CrossRefGoogle Scholar
Eckart, A., Mouawad, N., Krips, M., Straubmeier, C., & Bertram, T. (2002). Scientific potential for interferometric observations of the Galactic Center. In Future research direction and visions for astronomy. Ed. Dressler, A. M., SPIE Vol. 4835, p. 12–21CrossRefGoogle Scholar
Eisenhauer, F. (2009). This proceeding, 269CrossRefGoogle Scholar
Eisenhauer, F., Genzel, R., Alexander, T. et al. (2005). SINFONI in the Galactic Center: young stars and infrared flares in the central light-month. ApJ 628, 246259Google Scholar
Eisenhauer, F., Perrin, G., Brandner, W. et al. (2009). GRAVITY: Microarcsecond astrometry and deep interferometric imaging with the VLT. In Science with the VLT in the ELT Era. Ed. Moorwood, A., pp. 361–365CrossRefGoogle Scholar
Elias, N. M., Köhler, R., Stilz, I., Reffert, S., Geisler, R., Quirrenbach, A., de Jong, J., Delplancke, F., Tubbs, R. N., Launhardt, R., Henning, T., Mégevand, D., & Queloz, D. (2008). The astrometric data-reduction software for exoplanet detection with PRIMA. In Optical and infrared interferometry. Eds. Schöller, M., Danchi, W. C., & Delplancke, F., SPIE Vol. 7013, pp. 70133V-70133V-9CrossRefGoogle Scholar
Ghez, A. M., Hornstein, S. D., Lu, J. R. et al. (2005). The first laser guide star adaptive optics observations of the Galactic Center: Sgr A*'s infrared color and the extended red emission in its vicinity. ApJ 635, 10871094Google Scholar
Lawrence, J. S., Ashley, M. C. B., Tokovinin, A., & Travouillon, T. (2004). Exceptional astronomical seeing conditions above Dome C in Antarctica. Nature 431, 278281Google Scholar
Lin, D. N. C. & Ida, S. (1997). On the origin of massive eccentric planets. ApJ 477, 781791Google Scholar
Mayor, M. & Queloz, D. (1995). A Jupiter-mass companion to a Solar-type star. Nature 378, 355359Google Scholar
Miyamoto, M. & Yoshii, Y. (1995). Astrometry for determining the MACHO mass and trajectory. AJ 110, 14271432Google Scholar
Paczyński, B. (1986). Gravitational microlensing by the galactic halo. ApJ 304, 15.Google Scholar
Papaloizou, J. C. B. & Terquem, C. (2001). Dynamical relaxation and massive extrasolar planets. MNRAS 325, 221230Google Scholar
Pott, J. U., Woillez, J., Akeson, R. L. et al. (2008). Astrometry with the Keck-Interferometer: the ASTRA project and its science. astro-ph 0811.2264Google Scholar
Quirrenbach, A. (2001). Optical interferometry. ARAA 39, 353401Google Scholar
Quirrenbach, A. (2003). Astrometry as a precursor to DARWIN/TPF. In Towards other Earths – DARWIN/TPF and the search for extrasolar terrestrial planets. Eds. Fridlund, M. & Henning, T., ESA SP-539, pp. 19–30Google Scholar
Quirrenbach, A., Coudé du Foresto, V., Daigne, G., Hofmann, K. H., Hofmann, R. et al. (1998). PRIMA — study for a dual-beam instrument for the VLT Interferometer. In Astronomical interferometry. Ed. Reasenberg, R. D., SPIE Vol. 3350, pp. 807–817CrossRefGoogle Scholar
Quirrenbach, A., Henning, T., Queloz, D., Albrecht, S., Bakker, E. et al. (2004). The PRIMA astrometric planet search project. In New frontiers in stellar interferometry. Ed. Traub, W. A., SPIE Vol. 5491, pp. 424–432CrossRefGoogle Scholar
Rubilar, G. F. & Eckart, A. (2001). Periastron shifts of stellar orbits near the Galactic Center. A&A 374, 95104Google Scholar
Shao, M. & Colavita, M. M. (1992). Potential of long-baseline interferometry for narrow-angle astrometry. A&A 262, 353358Google Scholar
Trippe, S., Paumard, T., Ott, T., Gillessen, S., Eisenhauer, F., Martins, F., & Genzel, R. (2007). A polarized infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots. MNRAS 375, 764772Google Scholar
von der Lühe, O., Quirrenbach, A., & Koehler, B. (1995). Narrow-angle astrometry with the VLT Interferometer. In Science with the VLT. Ed. Walsh, J. R. & Danziger, I. J., pp. 445–450CrossRefGoogle Scholar