Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-15T18:45:23.287Z Has data issue: false hasContentIssue false

Recent insights into the epidemiology and genetics of Ascaris in China using molecular tools

Published online by Cambridge University Press:  19 October 2006

W. PENG
Affiliation:
Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia Jiangxi Medical Science Research Institute, Nanchang University, 461 Ba Yi Road, Nanchang, Jiangxi 330006, People's Republic of China
K. YUAN
Affiliation:
Jiangxi Medical Science Research Institute, Nanchang University, 461 Ba Yi Road, Nanchang, Jiangxi 330006, People's Republic of China
M. HU
Affiliation:
Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
R. B. GASSER
Affiliation:
Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia

Abstract

Ascaris is a large parasitic roundworm (nematode) of the small intestine of humans and pigs, which causes the socio-economically important disease, ascariasis. To better understand the relationship of Ascaris between the 2 host species, recent studies in China have focused on investigating the genetics and epidemiology of Ascaris from humans and pigs using a mutation scanning-based approach. Findings provided support for a low level of gene flow between the human and porcine Ascaris populations. Extending the studies of genotypic variability within Ascaris from humans and pigs, experimental infections of mice and pigs with selected genotypes of Ascaris were carried out. Initial results indicate that there is a significant difference in the ability of Ascaris eggs of genotype G1 (derived from human) and G3 (derived from pig) to infect and establish as adults in pigs, supporting the difference in the frequencies of these genotypes in natural Ascaris populations between pigs and humans in China. Taken together, current information supports that there is limited cross-infection of Ascaris between humans and pigs in endemic regions and that pigs are not a significant reservoir of human infection with the adult nematode in such areas.

Type
Review Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abebe, W., Tsuji, N., Kasuga-Aoki, H., Miyoshi, T., Isobe, T, Arakawa, T., Matsumoto, Y. and Yoshihara, S. ( 2002). Species-specific proteins identified in Ascaris lumbricoides and Ascaris suum using two-dimensional electrophoresis. Parasitology Research 88, 868871.CrossRefGoogle Scholar
Anderson, T. J. C., Romero-Abal, M. E. and Jaenike, J. ( 1993). Genetic structure and epidemiology of Ascaris populations: patterns of host affiliation in Guatemala. Parasitology 107, 319334.CrossRefGoogle Scholar
Anderson, T. J. C., Romero-Abal, M. E. and Jaenike, J. ( 1995). Mitochondrial DNA and Ascaris microepidemiology: the composition of parasite populations from individual hosts, families and villages. Parasitology 110, 221229.CrossRefGoogle Scholar
Anderson, T. J. C. ( 1995). Ascaris infections in humans from North America: molecular evidence for cross-infection. Parasitology 110, 215219.CrossRefGoogle Scholar
Anderson, T. J. C. and Jaenike, J. ( 1997). Host specificity, evolutionary relationships and macrogeographic differentiation among Ascaris populations from humans and pigs. Parasitology 115, 325342.CrossRefGoogle Scholar
Anderson, T. J. C. ( 2001). The dangers of using single locus markers in parasite epidemiology: Ascaris as a case study. Trends in Parasitology 17, 183188.CrossRefGoogle Scholar
Ansel, M. and Thibaut, M. ( 1973). Value of the specific distinction between Ascaris lumbricoides Linnè 1758 and Ascaris suum Goeze 1782. International Journal for Parasitology 3, 317319.CrossRefGoogle Scholar
Back, E., Müller, F. and Tobler, H. ( 1984 a). Structural organization of the two main rDNA size classes of Ascaris lumbricoides. Nucleic Acids Research 12, 13131332.Google Scholar
Back, E., Felder, H., Müller, F. and Tobler, H. ( 1984 b). Chromosomal arrangement of the two main rDNA size classes of Ascaris lumbricoides. Nucleic Acids Research 12, 13331347.Google Scholar
Barry, J. M. and O'Rourke, F. J. ( 1967). Ascariasis in pig and in man. Science Proceedings of the Royal Dublin Society, Series A 3, 3955.Google Scholar
Cooper, P. J. ( 2002). Immune responses in humans. In World Class Parasites: Volume 2. The Geohelminths: Ascaris, Trichuris and Hookworm ( ed. Holland, C. V. and Kennedy, M. W.; Series ed. Black and Seed, J. R.), pp. 89107. Kluwer Academic Publishers, Boston.
Crompton, D. W. T. ( 1989). Biology of Ascaris lumbricoides. In Ascariasis and Its Prevention and Control ( ed. Crompton, D. W. T., Nesheim, M. C. and Pawlowski, Z. S.), pp. 1044. Taylor and Francis, London, New York and Philadelphia.
Crompton, D. W. T. ( 2001). Ascaris and ascariasis. Advances in Parasitology 48, 285375.CrossRefGoogle Scholar
Elder, J. F. and Turner, B. J. ( 1995). Concerted evolution of repetitive DNA sequences in eukaryotes. Quarterly Review of Biology 70, 297320.CrossRefGoogle Scholar
Galvin, T. J. ( 1968). Development of human and pig Ascaris in the pig and rabbit. Journal of Parasitology 54, 10851091.CrossRefGoogle Scholar
Gasser, R. B. ( 2006). Molecular tools – advances, opportunities and prospects. Veterinary Parasitology 36, 6989.CrossRefGoogle Scholar
Gasser, R. B., Zhu, X. Q. and Chilton, N. B. ( 2002). The value of mutation scanning approaches for detecting genetic variation – implications for studying intestinal nematodes of humans. In World Class Parasites: Volume 2. The Geohelminths: Ascaris, Trichuris and Hookworm ( ed. Holland, C. V. and Kennedy, M. W.; Series ed. Black and Seed, J. R.), pp. 219233. Kluwer Academic Publishers, Boston.CrossRef
Holland, C. V. and Boes, J. ( 2002). Distribution and predisposition. In World Class Parasites: Volume 2. The Geohelminths: Ascaris, Trichuris and Hookworm ( ed. Holland, C. V. and Kennedy, M. W.; Series ed. Black and Seed, J. R.), pp. 124. Kluwer Academic Publishers, Boston.
Johnston, C. E., Bradley, J. E., Behnke, J. M., Matthews, K. R. and Else K. J. ( 2005). Isolates of Trichuris muris elicit different adaptive immune responses in their murine host. Parasite Immunology 27, 6978.CrossRefGoogle Scholar
Jungersen, G. ( 2002). Immunity and immune responses in pigs. In World Class Parasites: Volume 2. The Geohelminths: Ascaris, Trichuris and Hookworm ( ed. Holland, C. V. and Kennedy, M. W.; Series ed. Black and Seed, J. R.), pp. 105124. Kluwer Academic Publishers, Boston.
Kennedy, M. W., Qureshi, F., Haswell-Elkins, M. and Elkins, D. B. ( 1987). Homology and heterology between the secreted antigens of the parasitic larval stages of Ascaris lumbricoides and Ascaris suum. Clinical and Experimental Immunology 67, 2030.Google Scholar
Kurimoto, H. ( 1974). Morphological, biochemical and immunological studies on the differences between Ascaris lumbricoides Linnaeus, 1758 and Ascaris suum Goeze, 1782. Japanese Journal of Parasitology 23, 251267.Google Scholar
Lewis, R., Behnke, J. M., Stafford, P. and Holland, C. V. ( 2006). The development of a mouse model to explore resistance and susceptibility to early Ascaris suum infection. Parasitology 132, 289300.CrossRefGoogle Scholar
Maung, M. ( 1973). Ascaris lumbricoides Linnè, 1758 and Ascaris suum Goeze, 1782: morphological differences between specimens obtained from man and pig. Southeast Asian Journal of Tropical Medicine and Public Health 4, 4145.Google Scholar
Nadler, S. A. ( 1987). Biochemical and immunological systematics of some ascaridoid nematodes: genetic divergence between congeners. Journal of Parasitology 73, 811816.CrossRefGoogle Scholar
Nadler, S. A., Lindquist, R. L. and Near, T. J. ( 1995). Genetic structure of midwestern Ascaris suum populations: a comparison of isoenzyme and RAPD markers. Journal of Parasitology 81, 385394.CrossRefGoogle Scholar
Nadler, S. A. ( 1996). Microevolutionary patterns and molecular markers: the genetics of geographic variation in Ascaris suum. Journal of Nematology 28, 277285.Google Scholar
Nadler, S. A. and Hudspeth, D. S. ( 1998). Ribosomal DNA and phylogeny of the Ascaridoidea (Nemata: Secernentea): implications for morphological evolution and classification. Molecular Phylogenetics and Evolution 10, 221236.CrossRefGoogle Scholar
Nejsum, P., Parker, E. D. J. R., Frydenberg, J., Roepstorff, A., Boes, J., Haque, R., Astrup, I., Prag, J. and Skov Sorensen, U. B. ( 2005). Ascariasis is a zoonosis in Denmark. Journal of Clinical Microbiology 43, 11421148.CrossRefGoogle Scholar
O'Lorcain, P. and Holland, C. V. ( 2000). The public health importance of Ascaris lumbricoides. Parasitology 121 (Suppl.), S51S71.CrossRefGoogle Scholar
Peng W., Anderson, T. J. C., Zhou X. and Kennedy, M. W. ( 1998 c). Genetic variation in sympatric Ascaris populations from humans and pigs in China. Parasitology 117, 355361.Google Scholar
Peng, W., Yuan, K., Hu, M., Zhou, X. and Gasser, R. B. ( 2005). Mutation scanning-coupled analysis of haplotypic variability in mitochondrial DNA regions reveals low gene flow between human and porcine Ascaris in endemic regions of China. Electrophoresis 26, 43174326.CrossRefGoogle Scholar
Peng, W., Yuan, K., Peng, G., Zhou, X., Hu, M. and Gasser, R. B. ( 2006). Experimental infections of pigs and mice with Ascaris eggs representing different genotypes indicates variability in host affiliation. Parasitology (in the Press).CrossRefGoogle Scholar
Peng, W., Yuan, K., Zhou, X., Hu, M. and Gasser, R. B. ( 2003 a). Molecular-epidemiological study of Ascaris genotypes in China based on single-strand conformation polymorphism analysis of ribosomal DNA. Electrophoresis 24, 23082315.Google Scholar
Peng, W. and Zhou, X. ( 2001). Experimental epidemiological study on possible influence of pig-derived Ascaris on the transmission of human ascariasis. Chinese Journal of Epidemiology 22, 116118. (In Chinese, with English abstract).Google Scholar
Peng, W., Zhou, X. and Crompton, D. W. T. ( 1998 a). Ascariasis in China. Advances in Parasitology 41, 109148.Google Scholar
Peng, W., Zhou, X. and Cui, X. ( 2002). Comparison of the structure of natural and re-established population of Ascaris in humans in a rural community of Jiangxi, China. Parasitology 124, 641647.CrossRefGoogle Scholar
Peng, W., Zhou, X. and Gasser, R. B. ( 2003 b). Faecal egg profiles of Ascaris from humans: biological and epidemiological implications. Parasitology 127, 283290.Google Scholar
Peng, W., Zhou, X., Cui, X., Crompton, D. W. T., Whitehead, R. R., Xiong, J., Wu, H., Peng, J., Yang, Y., Wu, W., Xu, K. and Yan, Y. ( 1996). Ascaris, people and pigs in rural community of Jiangxi Province, China. Parasitology 113, 545557.Google Scholar
Peng, W., Zhou, X., Cui, X., Crompton, D. W. T., Whitehead, R. R., Xiong, J., Wu, H., Yang, Y., Wu, W., Xu, K. and Yan, Y. ( 1998 b). Transmission and natural regulation of infection with Ascaris lumbricoides in a rural community in China. Journal of Parasitology 84, 252258.Google Scholar
Sprent, J. F. A. ( 1952). Anatomical distinction between human and pig strains of Ascaris. Nature, London 170, 627628.CrossRefGoogle Scholar
Stephenson, L. S. ( 2002). Pathophysiology of intestinal nematodes. In World Class Parasites: Volume 2. The Geohelminths: Ascaris, Trichuris and Hookworm ( ed. Holland, C. V. and Kennedy, M. W.; Series ed. Black and Seed, J. R.), pp. 3961. Kluwer Academic Publishers, Boston.CrossRef
Stewart, T. B. and Hale, O. M. ( 1988). Losses to internal parasites in swine production. Journal of Animal Science 66, 15481554.CrossRefGoogle Scholar
Takata, I. ( 1951). Experimental infection of man with Ascaris of man and the pig. Kitasato Archives of Experimental Medicine 23, 4959.Google Scholar
Wakelin, D. and Bradley, J. E. ( 2002). Parasite strain diversity and host immune responses. In World Class Parasites: Volume 2. The Geohelminths: Ascaris, Trichuris and Hookworm ( ed. Holland, C. V. and Kennedy, M. W.; Series ed. Black and Seed, J. R.), pp. 199218. Kluwer Academic Publishers, Boston.CrossRef
Williams-Blangero, S., VandeBerg, J. L., Subedi, J., Aivaliotis, M. J., Rai, D. R., Upadhayay, R. P., Jha, B. and Blangero, J. ( 2002). Genes on chromosomes 1 and 13 have significant effects on Ascaris infection. Proceedings of the National Academy of Sciences, USA 99, 55335538.CrossRefGoogle Scholar
Williams-Blangero, S. and Blangero, J. ( 2002). Host susceptibility to intestinal worm infections. In World Class Parasites: Volume 2. The Geohelminths: Ascaris, Trichuris and Hookworm ( ed. Holland, C. V. and Kennedy, M. W.; Series ed. Black and Seed, J. R.), pp. 167183. Kluwer Academic Publishers, Boston.CrossRef
World Health Organization ( 1987). Prevention and Control of Intestinal Parasitic Infections. WHO Technical Report Series No. 749. WHO, Geneva.
Zhu, X. Q., Chilton, N. B., Jacobs, D. E., Boes, J. and Gasser, R. B. ( 1999). Characterisation of Ascaris from human and pig hosts by nuclear ribosomal DNA sequences. International Journal for Parasitology 29, 469478.CrossRefGoogle Scholar