Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T13:48:28.880Z Has data issue: false hasContentIssue false

The instability of a vortex ring impinging on a free surface

Published online by Cambridge University Press:  04 December 2009

P. J. ARCHER
Affiliation:
Aerodynamics and Flight Mechanics Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ, UK
T. G. THOMAS*
Affiliation:
Aerodynamics and Flight Mechanics Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ, UK
G. N. COLEMAN
Affiliation:
Aerodynamics and Flight Mechanics Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ, UK
*
Email address for correspondence: t.g.thomas@soton.ac.uk

Abstract

Direct numerical simulation is used to study the development of a single laminar vortex ring as it impinges on a free surface directly from below. We consider the limiting case in which the Froude number approaches zero and the surface can be modelled with a stress-free rigid and impermeable boundary. We find that as the ring expands in the radial direction close to the surface, the natural Tsai–Widnall–Moore–Saffman (TWMS) instability is superseded by the development of the Crow instability. The Crow instability is able to further amplify the residual perturbations left by the TWMS instability despite being of differing radial structure and alignment. This occurs through realignment of the instability structure and shedding of a portion of its outer vorticity profile. As a result, the dominant wavenumber of the Crow instability reflects that of the TWMS instability, and is dependent upon the initial slenderness ratio of the ring. At higher Reynolds number a short-wavelength instability develops on the long-wavelength Crow instability. The wavelength of the short waves is found to vary around the ring dependent on the local displacement of the long waves.

JFM classification

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Archer, P. J., Thomas, T. G. & Coleman, G. N. 2008 Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime. J. Fluid Mech. 598, 201226.CrossRefGoogle Scholar
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AAIA 8, 21722179.CrossRefGoogle Scholar
Eloy, C. & Le Dizés, S. 1999 Three-dimensional instability of burgers and Lamb–Oseen vortices in a strain field. J. Fluid Mech. 378, 145166.CrossRefGoogle Scholar
Garten, J. F., Werne, J., Fritts, D. C. & Arendt, S. 2001 Direct numerical simulations of the crow instability and subsequent vortex reconnection in a stratified fluid. J. Fluid Mech. 426, 145.CrossRefGoogle Scholar
Kelvin, Lord 1880 On the vibrations of a columnar vortex. Phil. Mag. 10, 155168.Google Scholar
Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.CrossRefGoogle Scholar
Krutzsch, C. H. 1939 Über eine experimentell beobachtete erscheining an werbelringen bei ehrer translatorischen beivegung in weklechin, flussigheiter. Ann. Phys. 5, 497523.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Dover.Google Scholar
Laporte, F. & Corjon, A. 2000 Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12, 10161031.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.CrossRefGoogle Scholar
Lim, T. T. & Nickels, T. B. 1992 Instability and reconnection in the head-on collision of two vortex rings. Nature 357, 225227.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1998 Vorticity and curvature at a free surface. J. Fluid Mech. 356, 149153.CrossRefGoogle Scholar
Maxworthy, T. 1972 The structure and stability of vortex rings. J. Fluid Mech. 51, 1532.CrossRefGoogle Scholar
Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. 346, 415425.Google Scholar
Shariff, K. & Leonard, A. 1992 Vortex rings. Annu. Rev. Fluid Mech. 24, 235279.CrossRefGoogle Scholar
Shariff, K., Verzicco, R. & Orlandi, P. 1994 A numerical study of three-dimensional vortex ring instabilities: viscous corrections and early nonlinear stage. J. Fluid Mech. 279, 351375.CrossRefGoogle Scholar
Song, M., Bernal, L. P. & Tryggvason, G. 1992 Head-on collision of a large vortex ring with a free surface. Phys. Fluids A 4, 14571466.CrossRefGoogle Scholar
Stanaway, S., Shariff, K. & Hussain, F. 1988 Head-on collision of viscous vortex rings. Proc. 1988 Summer Program pp. 287–309.Google Scholar
Sullivan, I. S., Niemela, J. J., Hershberger, R. E., Bolster, D. & Donnelly, R. J. 2008 Dynamics of thin vortex rings. J. Fluid Mech. 609, 319347.CrossRefGoogle Scholar
Swearingen, J. D., Crouch, J. D. & Handler, R. A. 1995 Dynamics and stability of a vortex ring impacting a solid boundary. J. Fluid Mech. 297, 128.CrossRefGoogle Scholar
Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73, 721733.CrossRefGoogle Scholar
Widnall, S. E., Bliss, D. B. & Tsai, C.-Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66, 3547.CrossRefGoogle Scholar
Widnall, S. E. & Sullivan, J. P. 1973 On the stability of vortex rings. Proc. R. Soc. London. A 332, 335353.Google Scholar
Widnall, S. E. & Tsai, C.-Y. 1977 The instability of the thin vortex ring of constant vorticity. Phil. Trans. R. Soc. Lond. 287, 273305.Google Scholar
Wu, C., Fu, Q. & Ma, H. 1995 Interactions of three-dimensional viscous axisymmetric vortex rings with a free surface. Acta Mech. Sin. 11, 229238.Google Scholar
Yao, Y. F., Thomas, T. G., Sandham, N. D. & Williams, J. J. R. 2001 Direct numerical simulation of turbulent flow over a rectangular trailing edge. Theor. Comput. Fluid Dyn. 14, 337358.CrossRefGoogle Scholar
Ye, Q. & Chu, C. K. 1997 The nonlinear interaction of vortex rings with a free surface. Acta Mech. Sin. 13, 120129.Google Scholar