Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T01:06:32.891Z Has data issue: false hasContentIssue false

On the frequency of partial quotients of regular continued fractions

Published online by Cambridge University Press:  04 August 2009

AI-HUA FAN
Affiliation:
LAMFA UMR 6140, CNRS, Université de Picardie Jules Verne, 33, Rue Saint Leu, 80039 Amiens Cedex 1, France. and Department of Mathematics, Wuhan University, Wuhan 430072, China. e-mail: ai-hua.fan@u-picardie.frlingmin.liao@lmpt.univ-tours.frjhma@whu.edu.cn
LINGMIN LIAO
Affiliation:
LAMFA UMR 6140, CNRS, Université de Picardie Jules Verne, 33, Rue Saint Leu, 80039 Amiens Cedex 1, France. and Department of Mathematics, Wuhan University, Wuhan 430072, China. e-mail: ai-hua.fan@u-picardie.frlingmin.liao@lmpt.univ-tours.frjhma@whu.edu.cn
JI-HUA MA
Affiliation:
LAMFA UMR 6140, CNRS, Université de Picardie Jules Verne, 33, Rue Saint Leu, 80039 Amiens Cedex 1, France. and Department of Mathematics, Wuhan University, Wuhan 430072, China. e-mail: ai-hua.fan@u-picardie.frlingmin.liao@lmpt.univ-tours.frjhma@whu.edu.cn

Abstract

We consider sets of real numbers in [0, 1) with prescribed frequencies of partial quotients in their regular continued fraction expansions. It is shown that the Hausdorff dimensions of these sets, always bounded from below by 1/2, are given by a modified variational principle.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Billingsley, P.Ergodic Theory and Information (John Wiley and Sons, Inc., 1965).Google Scholar
[2]Billingsley, P. and Henningsen, I.Hausdorff dimension of some continued-fraction sets. Z. Wahrscheinlichkeitstheorie verw. Geb. 31 (1975), 163173.Google Scholar
[3]Cajar, H.Billingsley dimension in probability spaces. Lecture Notes in Mathematics, 892 (Springer-Verlag, 1981).Google Scholar
[4]Falconer, K. J.Fractal Geometry, Mathematical Foundations and Application (John Wiley & Sons, Ltd., 1990).Google Scholar
[5]Glasner, E. and Weiss, B. On the interplay between measurable and topological dynamics. Handbook of dynamical systems. Vol. 1B (Elsevier B.V., Amsterdam, 2006), 597648.Google Scholar
[6]Khintchine, A. Ya.Continued Fractions (University of Chicago Press, 1964).Google Scholar
[7]Kiefer, Y.Fractal dimensions and random transformations. Trans. Amer. Math. Soc. 348 (1996), 20032008.Google Scholar
[8]Kifer, Y., Peres, Y. and Weiss, B.A dimension gap for continued fractions with independent digits. Israel J. Math. 124 (1), (2001), 6176.Google Scholar
[9]Kinney, J. R. and Pitcher, T. S.The dimension of some sets defined in terms of f-expansions. Z. Wahrscheinlichkeitstheorie verw. Geb. 4 (1966), 293315.Google Scholar
[10]Iosifescu, M. and Kraaikamp, C.The metrical theory on continued fractions. Mathematics and its Applications, 547 (Kluwer Academic Publishers, 2002).Google Scholar
[11]Liao, L. M., Ma, J. H. and Wang, B. W.Dimension of some non-normal continued fraction sets. Math. Proc. Camb. Phil. Soc. 145 (1) (2008), 215225.Google Scholar
[12]Shiryaev, A. N.Probability, Second Edition. GTM 95 (Springer-Verlag, 1996).Google Scholar
[13]Walters, P.An Introduction to Ergodic Theory (Springer-Verlag, 2001).Google Scholar
[14]Wu, J.A remark on the growth of the denominators of convergents. Monatsh. Math. 147 (3) (2006), 259264.Google Scholar