Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T06:01:45.614Z Has data issue: false hasContentIssue false

Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology

Published online by Cambridge University Press:  20 November 2009

D. J. GREENWOOD*
Affiliation:
Warwick HRI, Warwick University, Wellesbourne, Warwick CV 35 9EF, UK
K. ZHANG
Affiliation:
Warwick HRI, Warwick University, Wellesbourne, Warwick CV 35 9EF, UK
H. W. HILTON
Affiliation:
Warwick HRI, Warwick University, Wellesbourne, Warwick CV 35 9EF, UK
A. J. THOMPSON
Affiliation:
Warwick HRI, Warwick University, Wellesbourne, Warwick CV 35 9EF, UK
*
*To whom all correspondence should be addressed. Email: d.greenwood@warwick.ac.uk

Summary

Increasingly serious shortages of water make it imperative to improve the efficiency of irrigation in agriculture, horticulture and in the maintenance of urban landscapes. The main aim of the current review is to identify ways of meeting this objective. After reviewing current irrigation practices, discussion is centred on the sensitivity of crops to water deficit, the finding that growth of many crops is unaffected by considerable lowering of soil water content and, on this basis, the creation of improved means of irrigation scheduling. Subsequently, attention is focused on irrigation problems associated with spatial variability in soil water and the often slow infiltration of water into soil, especially the subsoil. As monitoring of soil water is important for estimating irrigation requirements, the attributes of the two main types of soil water sensors and their most appropriate uses are described. Attention is also drawn to the contribution of wireless technology to the transmission of sensor outputs. Rapid progress is being made in transmitting sensor data, obtained from different depths down the soil profile across irrigated areas, to a PC that processes the data and on this basis automatically commands irrigation equipment to deliver amounts of water, according to need, across the field. To help interpret sensor outputs, and for many other reasons, principles of water processes in the soil–plant system are incorporated into simulation models that are calibrated and tested in field experiments. Finally, it is emphasized that the relative importance of the factors discussed in this review to any particular situation varies enormously.

Type
Review
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrisqueta, J. M., Plana, V., Mounzer, O. H., Mendez, J. & Ruiz-Sanchez, M. C. (2007). Effects of soil tillage on runoff generation in a Mediterranean apricot orchard. Agricultural Water Management 93, 1118.Google Scholar
Abu-Awwad, A. M. (1998). Influence of vertical sand column and supplemental irrigation on barley yield in arid soils affected by surface crust. Irrigation Science 18, 101107.Google Scholar
Ahuja, L. R. & Nielsen, D. R. (1990). Field soil–water relations. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 143190. Madison, WI: ASA CSSA SSSA.Google Scholar
Al-Kaisi, M. M. & Broner, I. (2005). Crop Water Use and Growth Stages. No 4·715. Fort Collins, CO: Colorado State University Cooperative Extension.Google Scholar
Allen, R. G., Periera, L. S., Raes, D. & Smith, M. (1998). Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome: FAO.Google Scholar
Avery, B. W. (1990). Soils of the British Isles. Wallingford, UK: CAB International.Google Scholar
Bacci, L., Battista, P., Rapi, B., Sabatini, F. & Checcacci, E. (2003). Irrigation control of container crops by means of tensiometers. Acta Horticulturae 609, 467474.CrossRefGoogle Scholar
Bailey, R. (1990). Irrigated Crops and Their Management. Ipswich, UK: Farming Press Books.Google Scholar
Banedjschafie, S., Bastani, S., Widmoser, P. & Mengel, K. (2008). Improvement of water use efficiency and N-fertilizer efficiency by subsoil irrigation of winter wheat. European Journal of Agronomy 28, 17.CrossRefGoogle Scholar
Bastiaanssen, W. G. M., Allen, R. G., Droogers, P., D'urso, G. & Steduto, P. (2007). Twenty-five years modeling irrigated and drained soils: state of the art. Agricultural Water Management 92, 111125.CrossRefGoogle Scholar
Belmans, C., Wesseling, J. G. & Feddes, R. A. (1983). Simulation model of the water balance of cropped soil: SWATRE. Journal of Hydrology 63, 271286.Google Scholar
Ben-Hur, M., Faris, J., Malik, M. & Letey, J. (1989). Polymers as soil conditioners under consecutive irrigations and rainfall. Soil Science Society of America Journal 53, 11731177.CrossRefGoogle Scholar
Blonquist, J. M. Jr., Jones, S. B. & Robinson, D. A. (2006). Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor. Agricultural Water Management 84, 153165.Google Scholar
Boote, K. J. & Ketring, D. L. (1990). Peanut. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 675717. Madison, WI: ASA CSSA SSSA.Google Scholar
Bratton, W. L., Shinn, J. D., Farrington, S. P. & Bianchi, J. C. (2000). Water management using soil moisture sensor networks to determine irrigation requirements. In National Irrigation Symposium: Proceedings of the 4th Decennial Symposium 14–16 November 2000, pp. 485490. ASAE Publication 701P0004. Phoenix, AZ: American Society of Agricultural Engineers.Google Scholar
Bryant, R., Doerr, S. H., Hunt, G. & Conan, S. (2007). Effects of compaction on soil surface water repellency. Soil Use and Management 23, 238244.CrossRefGoogle Scholar
Çakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research 89, 116.Google Scholar
Campbell, G. S. & Anderson, R. Y. (1998). Evaluation of simple transmission line oscillators for soil moisture measurement. Computers and Electronics in Agriculture 20, 3144.Google Scholar
Cannavo, P., Recous, S., Parnaudeau, V. & Reau, R. (2008). Modelling N dynamics to assess environmental impacts of cropped soils. Advances in Agronomy 97, 131174.Google Scholar
Cayanan, D. F., Dixon, M. & Zheng, Y. (2008). Development of an automated irrigation system using wireless technology and root zone environmental sensors. Acta Horticulturae 797, 167171.Google Scholar
Cao, C. M., Xia, P. & Zhu, Z. Q. (2005). Application of wireless data transmission to the automatic control of water saving irrigation. Transactions of the Chinese Society of Agricultural Engineering 21, 127130.Google Scholar
Chard, J. (2005). Watermark Soil Moisture Sensors: Characteristics and Operating Instructions. Logan, UT: Utah State University.Google Scholar
Clark, L. J., Gowing, D. J. G., Lark, R. M., Leeds-Harrison, P. B., Miller, A. J., Wells, D. M., Whalley, W. R. & Whitmore, A. P. (2005). Sensing the physical and nutritional status of the root environment in the field: a review of progress and opportunities. Journal of Agricultural Science, Cambridge 143, 347358.Google Scholar
Clarke, D. (1998). Cropwat for Windows: User Guide. Rome: FAO.Google Scholar
Clay, J. (2004). World Agriculture and the Environment: A Commodity-by-Commodity Guide to Impacts and Practices. Washington, DC: Island Press.Google Scholar
Coates, R. W., Delwiche, M. J. & Brown, P. H. (2006). Design of a system for individual microsprinkler control. Transactions of the American Society of Agricultural and Biological Engineers 49, 19631970.Google Scholar
Costa, J. M., Ortuño, M. F. & Chaves, M. M. (2007). Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. Journal of Integrative Plant Biology 49, 14211434.Google Scholar
Cresswell, H. P., Coquet, Y., Bruand, A. & McKenzie, N. J. (2006). The transferability of Australian pedotransfer functions for predicting water retention characteristics of French soils. Soil Use and Management 22, 6270.Google Scholar
Damas, M., Prados, A. M., Gómez, F. & Olivares, G. (2001). HidroBus system: fieldbus for integrated management of extensive areas of irrigated land. Microprocessors and Microsystems 25, 177184.Google Scholar
Debaeke, P. & Aboudrare, A. (2004). Adaptation of crop management to water-limited environments. European Journal of Agronomy 21, 433446.Google Scholar
Debano, L. F. (1971). The effect of hydrophobic substances on water movement in soil during infiltration. Soil Science Society of America Proceedings 35, 340343.Google Scholar
Decagon Devices. (2009). Soil Moisture Systems. Available online at: http://www.decagon.com (verified 21 September 2009).Google Scholar
Dekker, L. W., Oostindie, K. & Ritswia, C. J. (2005). Exponential increase of publications related to soil water repellency. Australian Journal of Soil Research 43, 403441.Google Scholar
Denmeade, O. T. & Shaw, R. H. (1962). Availability of soil water to plants as affected by soil moisture content and meteorological conditions. Agronomy Journal 54, 385390.Google Scholar
Eck, H. V., Mathers, A. C. & Musick, J. T. (1987). Plant water stress at various growth stages and growth and yield of soybeans. Field Crops Research 17, 116.Google Scholar
European Commission. (2000). The Environmental Impacts of Irrigation in the European Union: A Report to the Environment Directorate of the European Commission. Available online at: http://ec.europa.eu/environment/agriculture/pdf/irrigation.pdf (verified 21 September 2009).Google Scholar
Evett, S. R. & Parkin, G. W. (2005). Advances in soil water content sensing: the continuing maturation of technology and theory. Vadose Zone Journal 4, 986991.Google Scholar
FAO. (2008). Hot Issues: Water Scarcity. Available online at: http://www.fao.org/nr/water/issues/scarcity.html (verified 21 September 2009).Google Scholar
Farahani, H. J., Izzi, G. & Oweis, T. Y. (2009). Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal 101, 469476.Google Scholar
Farooq, M., Kobayashi, N., Wahid, A., Ito, O. & Basra, S. M. A. (2009). Strategies for producing more rice with less water. Advances in Agronomy 101, 351388.Google Scholar
Fereres, E. & Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany 58, 147159.Google Scholar
Gandolfi, C., Facchi, A. & Maggi, D. (2006). Comparison of 1D models of water flow in unsaturated soils. Environmental Modelling and Software 21, 17591764.CrossRefGoogle Scholar
Geesing, D., Bachmaier, M. & Schmidhalter, U. (2004). Field calibration of a capacitance soil water probe in heterogeneous fields. Australian Journal of Soil Research 42, 289299.Google Scholar
Greenwood, D. J., Cleaver, T. J., Loquens, S. M. H. & Niendorf, K. B. (1977). Relationship between plant weight and growing period for vegetable crops in the United Kingdom. Annals of Botany 41, 987997.Google Scholar
Greenwood, D. J., Gerwitz, A., Stone, D. A. & Barnes, A. (1982). Root development of vegetable crops. Plant and Soil 68, 7596.Google Scholar
Groves, S. J. & Rose, S. C. (2004). Calibration equations for Diviner 2000 capacitance measurements of volumetric soil water content of six soils. Soil Use and Management 20, 9697.Google Scholar
Guitjens, J. C. (1990). Alfalfa. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 537568. Agronomy Series 30. Madison, WI: ASA CSSA SSSA.Google Scholar
Guo, J., Zheng, W., Zhao, C., Li, K. & Wang, J. (2005). Design and implementation of supervision and control system based on SMS for irrigation system in middle of isolated grassland of highway. Water Saving Irrigation 3, 2123.Google Scholar
Hanks, R. J. & Cardon, G. E. (2003). Soil water dynamics. In Handbook of Processes and Modelling in the Soil Plant System (Eds Benbi, D. K. & Neider, R.), pp. 261278. New York: The Haworth Reference Press.Google Scholar
Hart, J. K. & Martinez, K. (2006). Environmental sensor networks: a revolution in the earth system science? Earth-Science Reviews 78, 177191.Google Scholar
Hatfield, J. L. (1990). Methods of estimating evapotranspiration. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 435474. Madison, WI: ASA CSSA SSSA.Google Scholar
Hills, F. J., Winter, S. R. & Henderson, D. W. (1990). Sugarbeet. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 796810. ASA Monograph no. 30. Madison, WI: ASA CSSA SSSA.Google Scholar
Holler, M. (2008). High Density Multiple Depth Soil Moisture Tension Measurements for Irrigation Management. Available online at: http://www.xbow.com/Eko/Images/High%20Density,%20Multiple%20Depth,%20Wireless%20Soil%20Moisture.pdf (verified 21 September 2009).Google Scholar
Hoogendoorn Growth Management. (2008). Sensiplant: the Easy Wireless Solution for Pot Plant Cultivation. Available online at: http://www.hoogendoorn-uk.com/Newsletter_Sensiplant.htm (verified 21 September 2009).Google Scholar
Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D. & Fereres, E. (2009). AquaCrop – the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal 101, 448459.Google Scholar
Jadoon, K. Z., Slob, E., Vanclooster, M., Vereecken, H. & Lambot, S. (2008). Uniqueness and stability analysis of hydrogeophysical inversion for time-lapse ground-penetrating radar estimates of shallow soil hydraulic properties. Water Resources Research 44, W09421·1W09421·13.Google Scholar
Jensen, M. E., Rangeley, W. R. & Dieleman, P. J. (1990). Irrigation trends in world agriculture. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 3167. Madison, WI: ASA CSSA SSSA.Google Scholar
Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of Experimental Botany 55, 24272436.Google Scholar
Kang, Y. H. & Wan, S. Q. (2005). Effect of soil water potential on radish (Raphanus sativus L.) growth and water use under drip irrigation. Scientia Horticulturae 106, 275292.Google Scholar
Kim, Y., Evans, R. G. & Iversen, W. M. (2008). Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement 57, 13791387.Google Scholar
Klein, I. (2004). Scheduling automatic irrigation by threshold-set soil matric potential increases irrigation efficiency while minimizing plant stress. Acta Horticulturae 664, 361368.Google Scholar
Krieg, D. R. & Lascano, R. J. (1990). Sorghum. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 719739. Madison, WI: ASA CSSA SSSA.Google Scholar
Kroes, J. G., Van Dam, J. C., Groenendijk, P., Hendriks, R. F. A. & Jacobs, C. M. J. (2008). SWAP Version 3.2: Theory Description and User Manual. Alterra Report 1649. Wageningen, The Netherlands: Alterra.Google Scholar
Kruse, E. G., Bucks, D. A. & Von Bernuth, R. D. (1990). Comparison of irrigation systems. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 475508. Madison, WI: ASA CSSA SSSA.Google Scholar
Lambot, S., Binley, A., Slob, E. & Hubbard, S. (2008). Ground penetrating radar in hydrogeophysics. Vadose Zone Journal 7, 137139.Google Scholar
Lee, D. H. & Abriola, L. M. (1999). Use of the Richards equation in land surface parameterizations. Journal of Geophysical Research 104, 2751927526.Google Scholar
Lilly, A., Wösten, J. H. M., Nemes, A. & Le Bas, C. (1998). The development and use of the HYPRES Database in Europe. In Proceedings of the International Workshop on Characterisation and Measurement of the Hydraulic Properties of Unsaturated Porous Media (Eds van Genuchten, M. Th., Leij, F. J. & Wu, L.), pp. 12831294. Riverside, CA: University of California.Google Scholar
Losada, A., Juana, L. & Roldán, J. (1990). Operation diagrams for irrigation management. Agricultural Water Management 18, 289300.Google Scholar
McNaughton, K. G. & Jarvis, P. G. (1984). Using the Penman-Monteith equation predictively. Agricultural Water Management 8, 263278.Google Scholar
Meyer, W. S. & Green, G. C. (1980). Water use in wheat and plant indicators of available soil water. Agronomy Journal 72, 253257.Google Scholar
Monteith, J. L. (1973). Principles of Environmental Physics. London: Edward Arnold.Google Scholar
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Research 12, 513522.CrossRefGoogle Scholar
Muchow, R. C. & Sinclair, T. R. (1991). Water deficit effects on maize yields modelled under current and greenhouse climates. Agronomy Journal 83, 10521059.Google Scholar
Munoz-Carpena, R., Dukes, M. D., Li, Y. C. & Klassen, W. (2005). Field comparison of tensiometer and granular matrix sensor automatic drip irrigation on tomato. Horttechnology 15, 584590.Google Scholar
Musick, J. T. & Porter, K. B. (1990). Wheat. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 597638. Madison, WI: ASA CSSA SSSA.Google Scholar
Mwale, S. S., Azam-Ali, S. N. & Sparkes, D. L. (2005). Can the PR1 capacitance probe replace the neutron probe for routine soil-water measurement? Soil Use and Management 21, 340347.Google Scholar
Nannipieri, P. & Badalucco, L. (2003). Biological processes. In Handbook of Processes and Modeling in the Soil-Plant System (Eds Benbi, D. K. & Nieder, R.), pp. 5782. Binghampton, New York: The Haworth Reference Press.Google Scholar
Nemali, K. S. & Iersel, M. W. (2006). An automated system for controlling drought stress and irrigation in potted plants. Scientia Horticulturae 110, 292297.Google Scholar
Nogueira, L. C., Dukes, M. D., Haman, D. Z., Scholberg, J. M. & Cornejo, C. (2003). Data acquisition system and irrigation controller based on CR10X Datalogger and TDR sensor. Soil Crop Science Society of Florida Proceedings 62, 3846.Google Scholar
Or, D., Phutane, S. & Dechesne, A. (2007). Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils. Vadose Zone Journal 6, 298305.Google Scholar
Panda, R. K., Behera, S. K. & Kashyap, P. S. (2003). Effective management of irrigation water for wheat under stressed conditions. Agricultural Water Management 63, 3756.Google Scholar
Payne, D. (1988). The behaviour of water in soil. In Russell's Soil Conditions and Plant Growth (Ed. Wild, A.), pp. 315337. London: Longman Scientific and Technical.Google Scholar
Pedersen, A., Zhang, K., Thorup-Kristensen, K. & Jensen, L. S. (2009). Modelling diverse root density dynamics and deep nitrogen uptake – a simple approach. Plant and Soil. doi:10.1007/s11104-009-0028-8.Google Scholar
Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London A 193, 120145.Google Scholar
Pocknee, S., Garrick, V. & Kvien, C. (2004). Wireless local area network technology for on-farm monitoring and control. In Proceedings of the 7th International Conference on Precision Agriculture and Other Precision Resource Management (Ed. Mulla, D. J.), pp. 231241. Minneapolis, MN: University of Minnesota.Google Scholar
Qualls, R. J., Scott, J. M. & Deoreo, W. B. (2001). Soil moisture sensors for urban landscape irrigation: effectiveness and reliability. Journal of the American Water Resources Association 37, 547559.Google Scholar
Raes, D., Lemmens, H., Van Aelst, P., Vanden Bulcke, M. & Smith, M. (1988). IRSIS – Irrigation Scheduling Information System. Volume 1. Reference Manual 3. Leuven, Belgium: K. U. Leuven University.Google Scholar
Raes, D., Steduto, P., Hsiao, T. C. & Fereres, E. (2009 a). AquaCrop Reference Manual. Rome: FAO.Google Scholar
Raes, D., Steduto, P., Hsiao, T. C. & Fereres, E. (2009 b). AquaCrop – the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronom Journal 101, 438447.Google Scholar
Ragab, R. (1995). Towards a continuous operational system to estimate the root zones soil moisture from intermittent remotely sensed surface moisture. Journal of Hydrology 173, 125.Google Scholar
Rawlins, B. G., Marchant, B. P., Smyth, D., Scheib, C., Lark, R. M. & Jordan, C. (2009). Airborne radiometric survey data and a DTM as covariates for regional scale mapping of soil organic carbon across Northern Ireland. European Journal of Soil Science 60, 4454.Google Scholar
Ritchie, J. T. (1973). Influence of soil water status and meteorological conditions on evaporation from a corn canopy. Agronomy Journal 65, 893897.Google Scholar
Rosenthal, W. D., Arkin, G. F., Shouse, P. J. & Jordan, W. P. (1987). Water deficit effects on transpiration and leaf growth. Agronomy Journal 79, 10191026.Google Scholar
Russell, E. W. (1973). Soil Conditions and Plant Growth. 10th edn.London: Longman.Google Scholar
Sadras, V. O. & Milroy, S. P. (1996). Soil-water thresholds for the responses of leaf expansion and gas exchange: a review. Field Crops Research 47, 253266.Google Scholar
Sadras, V. O., Villalobos, F. J. & Fereres, E. (1993). Leaf expansion in field grown sunflower in response to soil and leaf water status. Agronomy Journal 85, 564570.Google Scholar
Saeed, H., Grove, I. G., Kettlewell, P. S. & Hall, N. W. (2008). Potential of partial rootzone drying as an alternative irrigation technique for potatoes. Annals of Applied Biology 152, 7180.Google Scholar
Salter, P. J. & Goode, J. E. (1967). Crop Responses to Water at Different Stages of Growth. Farnham Royal, UK: Commonwealth Agricultural Bureaux.Google Scholar
Savva, A. P. & Frenken, K. (2002). Crop Water Requirements and Irrigation Scheduling. Irrigation Manual Module 4. Harare: FAO.Google Scholar
Shukla, S., Yu, C. Y., Hardin, J. D. & Jaber, F. H. (2006). Wireless data acquisition and control systems for agricultural water management projects. HortTechnology 16, 595604.Google Scholar
Silva, L. L. (2007). Fitting infiltration equations to centre-pivot irrigation data in a Mediterranean soil. Agricultural Water Management 94, 8392.Google Scholar
Stalham, M. A., Allen, E. J., Rosenfeld, A. B. & Herry, F. X. (2007). Effects of soil compaction in potato (Solanum tuberosum) crops. Journal of Agricultural Science, Cambridge 145, 295312.Google Scholar
Stanley, C. D. & Maynard, D. N. (1990). Vegetables. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 921950. Madison, WI: ASA CSSA SSSA.Google Scholar
Steduto, P., Hsiao, T. C. & Fereres, E. (2007). On the conservative behaviour of biomass water productivity. Irrigation Science 25, 189207.Google Scholar
Steduto, P., Hsiao, T. C., Raes, D. & Fereres, E. (2009). AquaCrop – the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal 101, 426437.Google Scholar
Stewart, B. A. & Nielsen, D. R. (1990). Irrigation of Agricultural Crops. Agronomy No. 30. Madison, WI: ASA CSSA SSSA.Google Scholar
Stieber, T. D. & Shock, C. C. (1995). Placement of soil moisture sensors in sprinkler irrigated potatoes. American Potato Journal 72, 533543.Google Scholar
Stirzaker, R. J. & Hutchinson, R. A. (2005). Irrigation controlled by a wetting front detector: field evaluation under sprinkler irrigation. Australian Journal of Soil Research 43, 935943.Google Scholar
Taylor, H. M. & Gardner, H. R. (1963). Penetration of cotton seedling taproots as influenced by bulk density, moisture content, and strengths of soil. Soil Science 96, 153156.Google Scholar
Thomson, S. J. & Ross, B. B. (1996). Using Soil Moisture Sensors for Making Irrigation Management Decisions in Virginia. Biological Systems Engineering Publication 442–024. Virginia, VA: Virginia Co-operative Extension, University of Virginia.Google Scholar
Thompson, R. B., Gallardo, M., Valdez, L. C. & Fernandez, M. D. (2007). Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors. Agricultural Water Management 92, 1328.Google Scholar
Ulrich, T. (2008). Wireless network monitors H2O: system saves resources, increases yield in Cabernet vineyard. Wines and Vines Magazine, July Issue. Available online at: http://www.winesandvines.com/template.cfm?content=56594&section=features (verified 24 September 2009).Google Scholar
Van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44, 892898.Google Scholar
Van Loon, C. D. (1981). The effect of water stress on potato growth development and yield. American Journal of Potato Research 58, 5169.Google Scholar
Vellidis, G., Tucker, M., Perry, C., Kvien, C. & Bednarz, C. (2008). A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture 61, 4450.Google Scholar
Wang, F. X., Kang, Y., Liu, S. P. & Hou, X. Y. (2007). Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. Agricultural Water Management 88, 3442.Google Scholar
Wang, N., Zhang, N. & Wang, M. (2006). Wireless sensors in agriculture and food industry – recent development and future perspective. Computers and Electronics in Agriculture 50, 114.Google Scholar
Warrick, A. W. (1990). Nature and dynamics of soil water. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 6992. Madison, WI: ASA CSSA SSSA.Google Scholar
Werner, H. (2002). Measuring Soil Moisture for Irrigation Water Management. Publication FS 876. Dakota, SD: College of Agriculture and Biological Sciences, South Dakota State University.Google Scholar
Whalley, W. R., Watts, C. W., Hilhorst, M. A., Bird, N. R. A., Balendonck, J. & Longstaff, D. J. (2001). The design of porous material sensors to measure matric potential of water in soil. European Journal of Soil Science 52, 511519.Google Scholar
Whalley, W. R., Clark, L. J., Take, W. A., Bird, N. R. A., Leech, P. K., Cope, R. E. & Watts, C. W. (2007). A porous-matrix sensor to measure the matric potential of soil water in the field. European Journal of Soil Science 58, 1825.Google Scholar
Whalley, W. R., Lock, G., Jenkins, M., Peloe, T., Burek, K., Balendonck, J., Takei, W. A., Tuzel, H. & Tuzel, Y. (2009). Measurement of low matric potentials with porous matrix sensors and water filled tensiometers. Soil Science Society of America Journal 73, 17961803.Google Scholar
Wösten, J. H. M., Lilly, A., Nemes, A. & Le Bas, C. (1999). Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169185.Google Scholar
Wright, J. L. & Stark, J. C. (1990). Potato. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 859888. Madison, WI: ASA CSSA SSSA.Google Scholar
Yang, D., Zhang, T., Zhang, K., Greenwood, D. J., Hammond, J. P. & White, P. J. (2009). An easily implemented agro-hydrological procedure with dynamic root simulation for water transfer in the crop–soil system: Validation and application. Journal of Hydrology 370, 177190.Google Scholar
Zhang, K., Greenwood, D. J., White, P. J. & Burns, I. G. (2007). A dynamic model for the combined effects of N, P and K fertilizers on yield and mineral composition: description and experimental test. Plant and Soil 298, 8198.Google Scholar