Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T04:28:40.442Z Has data issue: false hasContentIssue false

Jupiter – friend or foe? III: the Oort cloud comets

Published online by Cambridge University Press:  24 November 2009

J. Horner
Affiliation:
Astronomy Group, Physics & Astronomy, The Open University, Milton Keynes MK7 6AA, UK
B.W. Jones*
Affiliation:
Astronomy Group, Physics & Astronomy, The Open University, Milton Keynes MK7 6AA, UK
J. Chambers
Affiliation:
Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington DC, 20015, USA

Abstract

It has long been assumed that the planet Jupiter acts as a giant shield, significantly lowering the impact rate of minor bodies on Earth. However, until recently, very little work had been carried out examining the role played by Jupiter in determining the frequency of such collisions. In this work, the third of a series of papers, we examine the degree to which the impact rate on Earth resulting from the Oort cloud comets is enhanced or lessened by the presence of a giant planet in a Jupiter-like orbit, in an attempt to more fully understand the impact regime under which life on Earth has developed. Our results show that the presence of a giant planet in a Jupiter-like orbit significantly alters the impact rate of Oort cloud comets on Earth, decreasing the rate as the mass of the giant planet increases. The greatest bombardment flux is observed when no giant planet is present.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, L., Alvarez, W., Asaro, F. & Michel, H. (1980). Science 208, 10941108.CrossRefGoogle Scholar
Chambers, J.E. (1999). Mon. Not. R. Astron. Soc. 304, 793799.CrossRefGoogle Scholar
Chapman, C.R. & Morrison, D. (1994). Nature 367, 3340.CrossRefGoogle Scholar
Emelyanenko, V.V., Asher, D.J. & Bailey, M.E. (2007). Mon. Not. R. Astron. Soc. 381(2), 779789.Google Scholar
Gomes, R.S., Fernandez, J.A., Gallardo, T. & Brunini, A. (2008). The scattered disc: origins, dynamics, and end states. In The Solar System beyond Neptune, pp. 259273. University of Arizona Press, Tucson, Arizona.Google Scholar
Gomes, R., Levison, H.F., Tsiganis, K. & Morbidelli, A. (2005). Nature 435, 466469.CrossRefGoogle Scholar
Horner, J. & Evans, N.W. (2002). Biases in cometary catalogues and Planet X. Mon. Not. R. Astron. Soc. 335, 641654.CrossRefGoogle Scholar
Horner, J., Evans, N.W. & Bailey, M.E. (2004). Mon. Not. R. Astron. Soc. 354, 798810.Google Scholar
Horner, J. & Jones, B.W. (2008). Int. J. Astrobiology 7, 251261. (Paper I).CrossRefGoogle Scholar
Horner, J. & Jones, B.W. (2009). Int. J. Astrobiology 8, 7580. (Paper II).Google Scholar
Horner, J. & Lykawka, P.S. (2009). Mon. Not. R. Astron. Soc. in press.Google Scholar
Laasko, T., Rantala, J. & Kaasalainen, M. (2006). Astron. Astrophys. 456, 373378.Google Scholar
Lykawka, P.S. & Mukai, T. (2007). Icarus 192, 238247.Google Scholar
Morbidelli, A. (2005). Origin and dynamical evolution of comets and their reservoirs. Preprint, arXiv:astro-ph/0512256v1.Google Scholar
Morbidelli, A., Bottke, W.F., Froeschle, Ch. & Michel, P. (2002). Origin and evolution of near-Earth objects. In Asteroids III, pp. 409422. University of Arizona Press, Tucson, Arizona.CrossRefGoogle Scholar
Nurmi, P., Valtonen, M.J. & Zheng, J.Q. (2001). Mon. Not. R. Astron. Soc. 327, 13671376.CrossRefGoogle Scholar
Sleep, N.H., Zahnle, Kasting J.F. & Morowitz, H.J. (1989). Nature, 342(6246), 139142.CrossRefGoogle Scholar
Ward, P.D. & Brownlee, D. (2006). Rare Earth, ch. 10. Copernicus books, New York.Google Scholar
Wetherill, G.W. (1994). Astrophys. Space Sci. 212, 2332.CrossRefGoogle Scholar