Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T07:06:06.268Z Has data issue: false hasContentIssue false

High quality GeV proton beams from a density-modulated foil target

Published online by Cambridge University Press:  14 September 2009

T.P. Yu
Affiliation:
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany Department of Physics, National University of Defense Technology, Changsha, China
M. Chen
Affiliation:
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
A. Pukhov*
Affiliation:
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
*
Address correspondence and reprint requests to: Alexander Pukhov, Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany. E-mail: pukhov@tp1.uni-duesseldorf.de

Abstract

We study proton acceleration from a foil target with a transversely varying density using multi-dimensional Particle-in-Cell (PIC) simulations. In order to reduce electron heating and deformation of the target, circularly polarized Gaussian laser pulses at intensities on the order of 1022 Wcm−2 are used. It is shown that when the target density distribution fits that of the laser intensity profile, protons accelerated from the center part of the target have quasi-monoenergetic spectra and are well collimated. In our two-dimensional PIC simulations, the final peak energy can be up to 1.4 GeV with the full-width of half maximum divergence cone of less than 4°. We observe highly efficient energy conversion from the laser to the protons in the simulations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi, O., MacKinnon, A.J., Patel, P., Galimberti, M. & Gizzi, L.A. (2003). Proton imaging detection of transient electromagnetic fields in laser-plasma interactions. Rev. Scient. Instrum. 74, 16881693.CrossRefGoogle Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Bulanov, S.V. & Khoroshkov, V.S. (2002). Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453456.CrossRefGoogle Scholar
Chen, M., Pukhov, A., Sheng, Z.M. & Yan, X.Q. (2008). Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets. Phys. Plasmas 15, 113103.CrossRefGoogle Scholar
Chen, M., Pukhov, A., Yu, T.P. & Sheng, Z.M. (2009). Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse. Phys. Rev. Lett. 103, 024801.CrossRefGoogle ScholarPubMed
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernández, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fuchs, J., Antici, P., D'Humiéres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pépin, H. & Audebert, P. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.CrossRefGoogle Scholar
Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, C.S., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696699.CrossRefGoogle Scholar
Ma, Y.Y., Sheng, Z.M., Gu, Y.Q., Yu, M.Y., Yin, Y., Shao, F.Q., Yu, T.P. & Chang, W.W. (2009). High-quality MeV protons from laser interaction with umbrellalike cavity target. Phys. Plasma 16, 034502.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Scie. 298, 15961600.Google ScholarPubMed
Nickles, P.V., Ter-Avetisyan, S., Schnürer, M., Sokollik, T., Sandner, W., Schreiber, , Jörg, , Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their applications. Laser Part. Beams 22, 1924.CrossRefGoogle Scholar
Pukhov, A. (1999). Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61, 425433.CrossRefGoogle Scholar
Pukhov, A. (2001). Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Phys. Rev. Lett. 86, 35623565.CrossRefGoogle ScholarPubMed
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. NEW J. Phys. 10, 013021.CrossRefGoogle Scholar
Romagnani, L., Borghesi, M., Cecchetti, C.A., Kar, S., Antici, P., Audebert, P., Bandhoupadjay, S., Ceccherini, F., Cowan, T., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Heathcote, R., Jung, R., Liseykina, T.V., Macchi, A., Mora, P., Neely, D., Notley, M., Osterholtz, J., Pipahl, C.A., Pretzler, G., Schiavi, A., Schurtz, G., Toncian, T., Wilson, P.A. & Will, O. (2008). Proton probing measurement of electric and magnetic fields generated by ns and ps laser-matter interactions. Laser Part. Beams 26, 241248.CrossRefGoogle Scholar
Schwoerer, H., Pfotenhauer, S., Jäckel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-Plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nat. 439, 445448.CrossRefGoogle ScholarPubMed
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar
Willi, O., Toncian, T., Borghesi, M., Fuchs, J., D'Humiéres, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C., Pipahl, A. & Romagnani, L. (2007). Laser triggered micro-lens for focusing and energy selection of MeV protons. Laser Part. Beams 25, 7177.CrossRefGoogle Scholar
Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., Lu, Y.R., Fang, J.X. & Chen, J.E. (2008). Generating High-Current Monoenergetic Proton Beams by a Circularly Polarized Laser Pulse in the Phase-Stable Acceleration Regime. Phys. Rev. Lett. 100, 135003.CrossRefGoogle ScholarPubMed
Yin, L., Albright, B.J., Hegelich, B.M. & Fernández, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar
Yu, T.P., Ma, Y.Y., Chen, M., Shao, F.Q., Yu, M.Y., Gu, Y.Q. & Yin, Y. (2009). Quasimonoenergetic proton beam from ultraintense-laser irradiation of a target with holed backside. Phys. Plasma 16, 033112.CrossRefGoogle Scholar
Zhang, X.M., Shen, B.F., Li, X.M., Jin, Z.Y., Wang, F.C. & Wen, M. (2007). Efficient GeV ion generation by ultraintense circularly polarized laser pulse. Phys. Plasmas 14, 123108.CrossRefGoogle Scholar