Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T11:42:28.780Z Has data issue: false hasContentIssue false

Markov Type of Alexandrov Spaces of Non-Negative Curvature Shin-Ichi Ohta

Published online by Cambridge University Press:  21 December 2009

Shin-Ichi Ohta
Affiliation:
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan, E-mail: sohta@math.kyoto-u.ac.jp
Get access

Abstract

We prove that Alexandrov spaces of non-negative curvature have Markov type 2 in the sense of Ball. As a corollary, any Lipschitz continuous map from a subset of an Alexandrov space of non-negative curvature into a 2-uniformly convex Banach space can be extended to a Lipschitz continuous map on the entire space.

Type
Research Article
Copyright
Copyright © University College London 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ball, K. M., Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal. 2 (1992), 137172.CrossRefGoogle Scholar
2.Ball, K. M., Carlen, E. A. and Lieb, E. H., Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115 (1994), 463482.CrossRefGoogle Scholar
3.Bartal, Y., Linial, N., Mendel, M. and Naor, A., On metric Ramsey-type phenomena. Ann. of Math. (2)162 (2005), 643709.CrossRefGoogle Scholar
4.Bourgain, J., Milman, V. and Wolfson, H., On type of metric spaces. Trans. Amer. Math. Soc. 294(1986), 295317.CrossRefGoogle Scholar
5.Bridson, M. R. and Haefliger, A., Metric Spaces of Non-positive Curvature, Springer (Berlin, 1999).CrossRefGoogle Scholar
6.Burago, D., Burago, Yu. and Ivanov, S., A Course in Metric Geometry, American Mathematical Society (Providence, RI, 2001).CrossRefGoogle Scholar
7.Burago, Yu., Gromov, M. and Perel'man, G., A. D. Alexandrov spaces with curvatures bounded below. Russian Math. Surveys 47 (1992), 158.CrossRefGoogle Scholar
8.Enflo, P., On infinite-dimensional topological groups. In Séminaire sur la Géométrie des Espaces de Banach (1977–1978), Exp. No. 10–11, École Polytechnique (Palaiseau, 1978), 11.Google Scholar
9.Foertsch, T. and Schroeder, V., Hyperbolicity, CAT(–l)-spaces and the Ptolemy inequality. Math Ann. (to appear).Google Scholar
10.Laakso, T. J., Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality. Geom. Funct. Anal. 10 (2000), 111123.CrossRefGoogle Scholar
11.Laakso, T. J., Ahlfors Q-regular spaces with arbitrary Q > > admitting weak Poincaré inequality Geom. Funct. Anal. 12 (2002), 650 (Erratum).CrossRefGoogle Scholar
12.Lang, U., Pavlović, B. and Schroeder, V., Extensions of Lipschitz maps into Hadamard spaces. Geom Funct. Anal. 10 (2000), 15271553CrossRefGoogle Scholar
13.Lang, U. and Schroeder, V., Kirszbraun's theorem and metric spaces of bounded curvature. Geom Funct. Anal. 7 (1997), 535560.CrossRefGoogle Scholar
14.Lee, J. R. and Naor, A., Extending Lipschitz functions via random metric partitions. Invent. Math. 160(2005), 5995.CrossRefGoogle Scholar
15.Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces, II, Springer (Berlin, New York, 1979).CrossRefGoogle Scholar
16.Linial, N., Magen, A. and Naor, A., Girth and Euclidean distortion. Geom. Funct. Anal. 12 (2002)380394.CrossRefGoogle Scholar
17.Mendel, M. and Naor, A., Some applications of Ball's extension theorem. Proc. Amer. Math. Soc. 134(2006), 25772584.CrossRefGoogle Scholar
18.Mendel, M. and Naor, A., Scaled Enflo type is equivalent to Rademacher type. Bull. London Math Soc. 39 (2007), 493498.CrossRefGoogle Scholar
19.Mendel, M. and Naor, A., Metric cotype. Ann. of Math. (2) 168 (2008), 247298.CrossRefGoogle Scholar
20.Milman, V. D. and Schechtman, G., Asymptotic Theory of Finite-Dimensional Normed Spaces (withan appendix by M. Gromov) (Lecture Notes in Mathematics 1200), Springer (Berlin, 1986).Google Scholar
21.Naor, A., Peres, Y., Schramm, O. and Sheffield, S., Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces. Duke Math. J. 134 (2006), 165197.CrossRefGoogle Scholar
22.Naor, A. and Schechtman, G., Remarks on non linear type and Pisier's inequality. J. Reine Angew Math. 552 (2002), 213236.Google Scholar
23.Ohta, S., Regularity of harmonic functions in Cheeger-type Sobolev spaces. Ann. Global Anal. Geom. 26 (2004), 397410.CrossRefGoogle Scholar
24.Ohta, S., Convexities of metric spaces. Geom. Dedicata 125 (2007), 225250.CrossRefGoogle Scholar
25.Sturm, K.-T., Metric spaces of lower bounded curvature. Expo. Math. 17 (1999), 3547.Google Scholar