Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T15:43:10.071Z Has data issue: false hasContentIssue false

Proper invariant turbulence modelling within one-point statistics

Published online by Cambridge University Press:  13 October 2009

MICHAEL FREWER*
Affiliation:
Institute of Fluid Dynamics, Department of Mechanical Engineering, Technische Universität Darmstadt, Hochschulstraße 1, D-64289 Darmstadt, Germany
*
Email address for correspondence: frewer@fdy.tu-darmstadt.de

Abstract

A new turbulence modelling approach is presented. Geometrically reformulating the averaged Navier–Stokes equations on a four-dimensional non-Riemannian manifold without changing the physical content of the theory, additional modelling restrictions which are absent in the usual Euclidean (3+1)-dimensional framework naturally emerge. The modelled equations show full form invariance for all Newtonian reference frames in that all involved quantities transform as true 4-tensors. Frame accelerations or inertial forces of any kind are universally described by the underlying four-dimensional geometry.

By constructing a nonlinear eddy viscosity model within the k−ϵ family for high turbulent Reynolds numbers the new invariant modelling approach demonstrates the essential advantages over current (3+1)-dimensional modelling techniques. In particular, new invariants are gained, which allow for a universal and consistent treatment of non-stationary effects within a turbulent flow. Furthermore, by consistently introducing via a Lie-group symmetry analysis a new internal modelling variable, the mean form-invariant pressure Hessian, it will be shown that already a quadratic nonlinearity is sufficient to capture secondary flow effects, for which in current nonlinear eddy viscosity models a higher nonlinearity is needed. In all, this paper develops a new unified formalism which will naturally guide the way in physical modelling whenever reasonings are based on the general concept of invariance.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, V. K., Kaptsov, O. V., Pukhnachov, V. V. & Rodionov, A. A. 1998 Applications of Group-Theoretical Methods in Hydrodynamics. Kluwer Academic.CrossRefGoogle Scholar
Apsley, D. D. & Leschziner, M. A. 1998 A new low-Reynolds-number nonlinear two-equation turbulence model for complex flows. Intl J. Heat Fluid Flow 19, 209222.CrossRefGoogle Scholar
Bluman, G. W. & Kumei, S. 1996 Symmetries and Differential Equations, 2nd edn. Springer.Google Scholar
Cantwell, B. J. 2002 Introduction to Symmetry Analysis. Cambridge University Press.Google Scholar
Cartan, E. 1923 Sur les variétés à connexion affine et la théorie de la relativité généralisée. Ann. Sci. École Norm. Sup. 40, 325412.CrossRefGoogle Scholar
Choi, K.-S. & Lumley, J. L. 2001 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 436, 5984.CrossRefGoogle Scholar
Craft, T. J., Launder, B. E. & Suga, K. 1996 Development and application of a cubic eddy-viscosity model of turbulence. Intl J. Heat Fluid Flow 17, 108115.CrossRefGoogle Scholar
Davidson, P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Dieks, D. 2006 Another look at general covariance and the equivalence of reference frames. Stud. Hist. Phil. Mod. Phys. 37, 174191.CrossRefGoogle Scholar
Ehlers, J. 1991 The Newtonian limit of general relativity. In Classical Mechanics and Relativity: Relationship and Consistency (ed. Ferrarese, G.), pp. 95106. Bibliopolis.Google Scholar
Einstein, A. 1916 Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769822.CrossRefGoogle Scholar
Frewer, M. 2009 More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202, 213246.CrossRefGoogle Scholar
Friedrichs, K. 1928 Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzberganges vom Einsteinschen zum Newtonschen Gesetz. Math. Ann. 98, 566575.CrossRefGoogle Scholar
Fushchych, W. & Popowych, R. 1994 a Symmetry reduction and exact solutions of the Navier-Stokes equations. Part I. J. Nonlin. Math. Phys. 1, 75113.CrossRefGoogle Scholar
Fushchych, W. & Popowych, R. 1994 b Symmetry reduction and exact solutions of the Navier-Stokes equations. Part II. J. Nonlin. Math. Phys. 1, 158188.CrossRefGoogle Scholar
Gatski, T. B. & Speziale, C. G. 1993 On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 5978.CrossRefGoogle Scholar
Havas, P. 1964 Four-dimensional formulations of Newtonian mechanics and their relation to the special and the general theory of relativity. Rev. Mod. Phys. 36, 938965.CrossRefGoogle Scholar
Ibragimov, N. H. 1994 Lie Group Analysis of Differential Equations, CRC Handbook, vols I–III. CRC Press.Google Scholar
Jones, W. P. & Launder, B. E. 1972 The prediction of laminarization with a two-equation model of turbulence. Intl J. Heat Mass Transfer 15, 301314.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 a Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 31, 538–504.Google Scholar
Kolmogorov, A. N. 1941 b The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Kretschmann, E. 1917 ber den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprngliche Relativitätstheorie. Ann. Phys. 53, 575614.Google Scholar
Launder, B. E. & Sharma, B. I. 1974 Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disk. Lett. Heat Mass Transfer 1, 131138.CrossRefGoogle Scholar
Leschziner, M. A. 2001 Statistical turbulence modelling for the computation of physically complex flows. In New Trends in Turbulence (ed. Lesieur, M., Yaglom, A. & David, F.), pp. 187258. Springer.CrossRefGoogle Scholar
Lumley, J. L. 1970 Toward a turbulent constitutive relation. J. Fluid Mech. 41, 413434.CrossRefGoogle Scholar
Mansour, N. N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 1544.CrossRefGoogle Scholar
Norton, J. D. 1993 General covariance and the foundations of general relativity: eight decades of dispute. Rep. Progr. Phys. 56, 791858.CrossRefGoogle Scholar
Norton, J. D. 1995 Did Einstein stumble? The debate over general covariance. Erkenntnis 42, 223245.CrossRefGoogle Scholar
Oberlack, M. 2001 A unified approach for symmetries in plane parallel turbulent shear flows. J. Fluid Mech. 427, 299328.CrossRefGoogle Scholar
Olver, P. J. 1993 Applications of Lie Groups to Differential Equations, 2nd edn. Springer.CrossRefGoogle Scholar
Ovsiannikov, L. V. 1982 Group Analysis of Differential Equations, 2nd edn. Academic.Google Scholar
Pope, S. B. 1975 A more general effective-viscosity hypothesis. J. Fluid Mech. 72, 331340.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Reynolds, W. C. & Kassinos, S. C. 1995 One-point modelling of rapidly deformed homogeneous turbulence. Proc. R. Soc. Lond. A 451, 87104.Google Scholar
Rodi, W. & Mansour, N. N. 1993 Low Reynolds number k–ϵ modelling with the aid of direct simulation data. J. Fluid Mech. 250, 509529.CrossRefGoogle Scholar
Schrödinger, E. 1985 Space–Time Structure, 4th edn. Cambridge University Press.CrossRefGoogle Scholar
Sexl, R. U. & Urbantke, H. K. 2001 Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry in Field and Particle Physics, 2nd edn. Springer.CrossRefGoogle Scholar
Shih, T.-H., Zhu, J. & Lumley, J. L. 1995 A new Reynolds stress algebraic equation model. Comput. Methods Appl. Mech. Engng 125, 287302.CrossRefGoogle Scholar
Spencer, A. J. M. & Rivlin, R. S. 1958 The theory of matrix polynomials and its applications to the mechanics of isotropic continua. Arch. Rat. Mech. Anal. 2, 309336.CrossRefGoogle Scholar
Speziale, C. G. 1987 On nonlinear kl and k–ϵ models of turbulence. J. Fluid Mech. 178, 459475.CrossRefGoogle Scholar
Speziale, C. G. 1991 Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech. 23, 107157.CrossRefGoogle Scholar
Speziale, C. G., Younis, B. A. & Berger, S. A. 2000 Analysis and modelling of turbulent flow in an axially rotating pipe. J. Fluid Mech. 407, 126.CrossRefGoogle Scholar
Trautman, A. 1966 Comparison of Newtonian and relativistic theories of space–time. In Perspectives in Geometry and Relativity (ed. Hoffmann, B.), pp. 413425. Indiana University Press.Google Scholar
Ünal, G. 1997 Constitutive equation of turbulence and the scaling group of the Navier–Stokes equations. In Modern Group Analysis VII (ed. Ibragimov, N. H., Naqvi, K. R. & Straume, E.), pp. 317323. Mars.Google Scholar
Wallin, S. & Johansson, A. V. 2000 An explicit algebraic Reynolds stress model for incompressible and compressible flows. J. Fluid Mech. 403, 89132.CrossRefGoogle Scholar