Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T12:45:22.616Z Has data issue: false hasContentIssue false

A Database for Field Extensions of the Rationals

Published online by Cambridge University Press:  01 February 2010

Jürgen Klüners
Affiliation:
Universität Heidelberg, IWR, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany, klueners@iwr.uni-heidelberg.de, http://www.iwr.uni-heidelberg.de/~Juergen.Klueners
Gunter Malle
Affiliation:
FB Mathematik/Informatik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany, malle@mathematik.uni-kassel.de, http://www.mathematik.uni-kassel.de/~malle/

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper announces the creation of a database for number fields. It describes the contents and the methods of access, indicates the origin of the polynomials, and formulates the aims of this collection of fields.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2001

References

1.Acciaro, V. and Klüners, J., ‘Computing local Artin maps, and solvability of norm equations’, J. Symb. Comput. 30 (2000) 239252.CrossRefGoogle Scholar
2.Beckmann, S., ‘IS every extension of ℚ the specialization of a branched covering?’, J. Algebra 164 (1994) 430451.CrossRefGoogle Scholar
3.Belabas, K., ‘A fast algorithm to compute cubic fields’, Math. Comput. 66 (1997) 12131237.CrossRefGoogle Scholar
4.Berge, A., Martinet, J. and Olivier, M., ‘The computation of sextic fields with a quadratic subfield’, Math. Comput. 54 (1990) 869884.CrossRefGoogle Scholar
5.Böge, S., ‘Witt-Invariante und ein gewisses Einbettungsproblem’, J. Reine Angew. Math. 410 (1990) 153159.Google Scholar
6.Buchmann, J., Ford, D. and Pohst, M., ‘Enumeration of quartic fields of small discriminant’, Math. Comput. 61 (1993) 873879.CrossRefGoogle Scholar
7.Cohen, H., A course in computational algebraic number theory (Springer, Berlin, 1993).CrossRefGoogle Scholar
8.Cohen, H., Advanced topics in computational number theory (Springer, Berlin, 2000).CrossRefGoogle Scholar
9.Cohen, H., Diaz, F. Diaz Y and Olivier, M., ‘Tables of octic fields with a quartic subfield’, Math. Comput. 68 (1999) 17011716.CrossRefGoogle Scholar
10.Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M. and Wildanger, K., ‘KANT V4’, J. Symb. Comput. 24 (1997) 267283.CrossRefGoogle Scholar
11.Diaz, F. Diaz Y, ‘Valeurs minima du discriminant pour certains types de corps de degré 7’, Ann. Inst. Fourier 34 (1984) 2938.CrossRefGoogle Scholar
12.Diaz, F. Diaz Y, ‘Petits discriminants des corps de nombres totalement imaginaires de degré 8’. J. Number Theory 25 (1987) 3452.CrossRefGoogle Scholar
13.Diaz, F. Diaz Y, ‘Discriminant minimal et petits discriminants des corps de nombres de degré 7 avec cinq places réelles’, J. London Math. Soc. (2) 38 (1988) 3346.CrossRefGoogle Scholar
14.Diaz, F. Diaz Y and Olivier, M., ‘Imprimitive ninth-degree number fields with small discriminants’, Math. Comput. 64, microfiche suppl. (1995) 305321.CrossRefGoogle Scholar
15.Fieker, C., ‘Computing class fields via the Artin map’, Math. Comput. 70 (2001) 12931303.CrossRefGoogle Scholar
16.Fieker, C. and Klüners, J., ‘Minimal discriminants for fields with Frobenius groups as Galois groups', IWR-Preprint 2001-33, Universität Heidelberg, 2001.Google Scholar
17.Ford, D. and Pohst, M., ‘The totally real A5 extension of degree 6 with minimum discriminant’, Exp. Math. 1 (1992) 231235.CrossRefGoogle Scholar
18.Ford, D. and Pohst, M., ‘The totally real A6 extension of degree 6 with minimum discriminant’, Exp. Math. 2 (1993) 231232.CrossRefGoogle Scholar
19.Ford, D., Pohst, M., Daberkow, M. and H. Nasser, ‘The S5 extensions of degree 6 with minimum discriminant’, Exp. Math. 7 (1998) 121124.CrossRefGoogle Scholar
20.Haran, D. and Jarden, M., ‘The absolute Galois group of a pseudo real closed field’, Ann. Sc. Norm. Super. Pisa 12 (1985) 449489.Google Scholar
21.Klüners, J. and Malle, G., ‘Explicit Galois realization of transitive groups of degree up to 15’, J. Symb. Comput. 30 (2000) 675716.CrossRefGoogle Scholar
22.Koch, H., Number theory-algebraic numbers and functions (Amer. Math. Soc, Providence, RI, 2000).Google Scholar
23.Malle, G., ‘Multi-parameter polynomials with given Galois group’, J. Symb. Comput. 30(2000) 717731.CrossRefGoogle Scholar
24.Malle, G. and Matzat, B. H., Inverse Galois theory (Springer, Berlin, 1999).CrossRefGoogle Scholar
25.Narkiewicz, W., Elementary and analytic theory of algebraic numbers (Springer, Berlin, 1989).Google Scholar
26.Olivier, M., ‘Corps sextiques primitifs. IV’, Semin. Theor. Nombres Bordx. (II) 3 (1991) 381404.CrossRefGoogle Scholar
27.Olivier, M., ‘The computation of sextic fields with a cubic subfield and no quadratic subfield’, Math. Comput. 58 (1992) 419432.CrossRefGoogle Scholar
28.Pohst, M., Martinet, J. and Diaz, F. Diaz Y, ‘The minimum discriminant of totally real octic fields’, J. Number Theory 36 (1990) 145159.CrossRefGoogle Scholar
29.Pohst, M., ‘The minimum discriminant of seventh degree totally real algebraic number fields’, Number theory and algebra (Academic Press, New York, 1977) 235240.Google Scholar
30.Pohst, M., ‘On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields’, J. Number Theory 14 (1982) 99117.CrossRefGoogle Scholar
31.Schwarz, A., Pohst, M. and Diaz, F. Diaz Y, ‘A table of quintic number fields’, Math. Comput. 63 (1994) 361376.CrossRefGoogle Scholar
32.Serre, J.-P., Topics in Galois theory (Jones and Bartlett, Boston, 1992).Google Scholar
Supplementary material: File

Kluners and Malle Appendix

Appendix

Download Kluners and Malle Appendix(File)
File 4.2 MB