Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T07:25:00.485Z Has data issue: false hasContentIssue false

Are central pattern generators understandable?

Published online by Cambridge University Press:  04 February 2010

Allen I. Selverston
Affiliation:
Department of Biology, University of California, San Diego, La Jolle. Calif. 92093

Abstract

Most rhythmic behaviors are produced by a specialized ensemble of neurons found in the central nervous system. These central pattern generators (CPGs) have become a cornerstone of neuronal circuit analysis. Studying simple invertebrate nervous systems may reveal the interactions of the neurons involved in the production of rhythmic motor output. There has recently been progress in this area, but due to certain intrinsic features of CPGs it is unlikely that present techniques will ever yield a complete understanding of any but the simplest of them. The chief impediment seems to be our inability to identify and characterize the total interneuronal pool making up a CPG. In addition, our general analytic strategy relies on a descriptive, reductionist approach, with no analytical constructs beyond phenomenological modeling. Detailed descriptive data are usually not of sufficient depth for specific model testing, giving rise instead to ad hoc explanations of mechanisms which usually turn out to be incorrect. Because they make too many assumptions, modeling studies have not added much to our understanding of CPCs; this is due not so much to inadequate simulations as to the poor quality and incomplete nature of the data provided by experimentalists.

A basic strategy that would provide sufficient information for neural modeling would include: (1) identifying and characterizing each element in the CPG network; (2) specifying the synaptic connectivity between the elements; and (3) analyzing nonlinear synaptic properties and interactions by means of the connectivity matrix. Limitations based on our present technical capabilities are also discussed.

Type
Target Articles
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alving, B. O. (1968) Spontaneous activity in isolated somata of Aplysia pacemaker neurons. Journal of General Physiology 51:2945. [AIS]CrossRefGoogle Scholar
Andersen, P. & Eccles, J. C. (1962) Inhibitory phasing of neuronal discharge. Nature (London) 196:645–47. [GS]CrossRefGoogle ScholarPubMed
Anninos, P. A., Beek, B., Csermely, T. J., Harth, E. & Pertile, G. (1970) Dynamics of neural structures. Journal of Theoretical Biology 26:121–48. [EH]CrossRefGoogle ScholarPubMed
Arechiga, H. (1977) Circadian rhythmicity in the nervous system of crustaceans. In: Symposium on oscillator Theory and neurophysiology, Federation Proceedings 36:2036–41. [HMP]Google ScholarPubMed
Ayers, J. L. & Clarac, F. (1978) Neuromuscular strategies underlying different behavioral acts in a multifunctional crustacean leg joint. Journal of Comparative Physiology 128A:8194. [JA, HMP]CrossRefGoogle Scholar
Ayers, J. L. & Davis, W. J. (1977) Neuronal control of locomotion in the lobster Homarus americanus. I. Motor programs for forward and backward walking. Journal of Comparative Physiology 115:124. [JA]CrossRefGoogle Scholar
Ayers, J. L. & Selverston, A. I. (1977) Monosynaptic control of inter- and intra-oscillator coordination of an endogenous pacemaker network. Society for Neuroscience Abstracts 3:267. [JA, RLC]Google Scholar
Ayers, J. Jr & Selverston, A. I. (1977) Synaptic control of an endogenous pacemaker network. Journal of Physiology 73:452–61. [HMP]Google ScholarPubMed
Ayers, J. Jr & Selverston, A. I. (1979) Monosynaptic entrainment of an endogenous pacemaker network: a cellular mechanism for von Holst's magnet effect. Journal of Comparative Physiology 129:517. [HMP]CrossRefGoogle Scholar
Baker, R. & Berthoz, A., eds. (1977) Control of gaze by brain stem neurons. Proceedings of the Symposium held in Royaumont, Paris, France, July 1977. Amsterdam, and N. Y.: Elsevier/North-Holland Biomedical Press. [CRSK]Google Scholar
Barker, J. L., Ifshin, M. S. & Gainer, H. (1975) Studies on bursting pacemaker potential activity in molluscan neurons. III. Effects of hormones. Brain Research 84:501–3. [AIS]CrossRefGoogle ScholarPubMed
Barker, J. L. & Gainer, H. (1974) Peptide regulation of bursting pacemaker activity in a molluscan neurosecretory cell. Science 184:1371–73. [AIS]CrossRefGoogle Scholar
Basinger, S. F., Gordon, W. C. & Lam, D. M. K. (1979) Differential labelling of retinal neurones by 3H-2-deoxyglucose. Nature 280:682–84. [SCR]CrossRefGoogle ScholarPubMed
Bässler, U. (1977) Sensory control of leg movement in the stick insect, Carausius morosus. Biological Cybernetics 25:6172. [GW]CrossRefGoogle ScholarPubMed
Bentley, D. & Konishi, M. (1978) Neural control of behavior. In: Annual Review of Neuroscience, vol. 1, ed. Cowan, W. M. 2, Hall, W., and Kandel, E. R., pp. 3559. [HMP]Google Scholar
Berry, M. S. (1972) A system of electrically coupled small cells in the buccal ganglia of the pond snail Planorbis corneus. Journal of Experimental Biology 56:621–37. [SM]CrossRefGoogle ScholarPubMed
Berry, M. S. & Cottrell, G. A. (1974) The value of high extracellular calcium as a test for monosynaptic connexions in Planorbis corneus. journal of Physiology (London) 242:8284P. [AIS]Google ScholarPubMed
Berry, M. S. & Pentreath, V. W. (1976) Criteria for distinguishing between monosynaptic and polysynaptic transmission. Brain Research 105:120. [AIS]CrossRefGoogle ScholarPubMed
Bohr, N. (1933) Light and life. Nature 131:421–57. [CML]CrossRefGoogle Scholar
Bowerman, R. F. & Larimer, J. L. (1974) Command fibers in the circum-esophageal connectives of the crayfish. II. Phasic Fibers. journal of Experimental Biology 60:118–29. [JA]CrossRefGoogle Scholar
Bradley, C. W., Euler, C. von, Marttila, I. & Roos, B. (1975) A model of the central and reflex inhibition of inspiration in the cat. Biological Cybernetics 19:105–16. (SG)CrossRefGoogle Scholar
Brändle, K. & Székely, G. (1973) The control of alternating coordination of limb pairs in the newt (Triturus vulgaris). Brain, Behavior and Evolution 8:366–85. [GS]CrossRefGoogle ScholarPubMed
Brown, T. G. (1911) The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of Britain 84:308–19. [AIS]Google Scholar
Brown, T. G. (1914) On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. Journal of Physiology (London) 48:1846. [AIS]CrossRefGoogle Scholar
Bulloch, A. G. M. & Dorsett, D. A. (1979) The integration of the patterned output of buccal motoneurons during feeding in Tritonia hombergi. Journal of Experimental Biology 79:2340. [SM]CrossRefGoogle Scholar
Bullock, T. H. (1976) In search of principles in neural integration. In: Simple Networks and Behavior, ed. Fentress, J. D., pp. 5260. Sunderland, Mass.: Sinauer Assoc. [AIS]Google Scholar
Bullock, T. H. (1980) Reassessment of neural connectivity and its specification. In: Information processing in the nervous system, ed. Pinsker, H. M. & Willis, W. D. Jr, pp. 199220. New York: Raven Press. [WJD]Google Scholar
Bunge, M. (1980) From neuron to behavior and mentation: an exercise in levelmanship. In: Information Processing in the Nervous System, ed. Pinsker, H. M. and Willis, W. D. Jr, pp. 116. New York: Raven Press. [HMP]Google Scholar
Burns, B. D. & Salmoraghi, G. C. (1960) Repetitive firing of respiratory neurones during their burst activity. Journal of Neurophysiology 23:2447. [AIS]CrossRefGoogle ScholarPubMed
Burrows, M. (1975) Co-ordinating interneurons of the locust which convey two patterns of motor commands: their connexions with flight motor neurons. Journal of Experimental Biology 63:713–33. [JA]CrossRefGoogle Scholar
Burrows, M. (1975) Co-ordinating interneurones of the locust which convey two patterns of motor commands: their connexions with ventilatory motoneurones. Journal of Experimental Biology 63:735–53. [FD]CrossRefGoogle ScholarPubMed
Burrows, M. (1975) Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust. Journal of Experimental Biology 62:189219. [GW]CrossRefGoogle ScholarPubMed
Burrows, M. (1979) Synaptic potentials effect the release of transmitter from locust nonspiking interneurons. Science 204:8183. [TJW]CrossRefGoogle ScholarPubMed
Burrows, M. (1980) The control of sets of motoneurons by local interneurons in the locust. Journal of Physiology 298:213–33. [FD.AIS]CrossRefGoogle ScholarPubMed
Byrne, J. H. & Koester, J. (1978) Respiratory pumping: neuronal control of a centrally commanded behavior in Aplysia. Brain Research 143:87105. [HMP]CrossRefGoogle ScholarPubMed
Calabrese, R. L. (1977) The neural control of alternate heartbeat coordination states in the leech, Hirudo medidnalis. Journal of Comparative Physiology 122:111–43. [RLC]CrossRefGoogle Scholar
Calabrese, R. L. (1979) The roles of endogenous membrane properties and synaptic interaction in generating the heartbeat rhythm of the leech, Hirudo medidnalis. Journal of Experimental Biology 82:163–76. [RLC]CrossRefGoogle Scholar
Calabrese, R. L. (1979) Suppression of the activity of secondary impulse initiation sites by the activity of a primary initiation site in rhythmically active neurons. Society for Neuroscience Abstract 5:493. [HMP]Google Scholar
Camp, C. & Pinsker, H. M. (1979) Computer separation of unitary spikes from whole-nerve recordings. Brain Research 169:455–79. [HMP]CrossRefGoogle ScholarPubMed
Carpenter, G. A. (1979) Bursting phenomena in excitable membranes. SIAM Journal of Applied Mathematics 36:334–72. [AHC]CrossRefGoogle Scholar
Chase, Ronald. (1979) The mentalist hypothesis and invertebrate neurobiology. Perspectives in Biology and Medicine 23:103–17. [AODW]Google ScholarPubMed
Cobbs, J. & Pinsker, H. M. (1978) In vivo responses of paired giant mechanore-ceptor neurons in Aplysia abdominal ganglion. Journal of Neurophysiology 9:121–41. [HMP]Google ScholarPubMed
Cohen, A. H. & Wallén, P. (submitted) The neuronal correlate to locomotion in fish: “Fictive swimming” induced in an in vitro preparation of the lamprey spinal cord. [AHC]Google Scholar
Cohen, L. B., Salzberg, B. M. & Grinvald, A. (1978) Optical methods for monitoring neuron activity. Annual Review of Neuroscience 1:171–82. [AIS, GLG, HMP]CrossRefGoogle ScholarPubMed
Davis, W. J. (1976) Organizational concepts in the central motor networks of invertebrates. In: Neural Control of Locomotion, ed. Herman, R. M., Grillner, S., Stein, P. S. G., and Stuart, D. G., pp. 265–92. New York: Plenum Press. [MM, AIS]CrossRefGoogle Scholar
Delcomyn, F. (1976) An approach to the study of neural activity during behaviour in insects. Journal of Insect Physiology 22:1223–27. [FD]CrossRefGoogle Scholar
Delcomyn, F. (1977) Corollary discharge to cockroach giant interneurones. Nature (London) 269:160–62. [FD]CrossRefGoogle ScholarPubMed
Delcomyn, F. (1980) Neural basis of rhythmic behavior in animals. Science (in press). [RG]CrossRefGoogle ScholarPubMed
Delcomyn, F. & Daley, D. (1979) Central excitation of cockroach giant interneurons during walking. Journal of Comparative Physiology 130:3948. [FD]CrossRefGoogle Scholar
Dennett, D. C. (1978) Brainstorms: Philosophical Essays on Mind and Psychology. Montgomery, Vt.: Bradford Books. [LJG]Google Scholar
Diamond, J. (1979) The regulation of nerve sprouting by extrinsic influences. In: The Neurosciences, 4th Study Program, ed. Schmitt, F. O. and Worden, F. G.. Cambridge, Mass.: MIT Press. [EH]Google Scholar
Dorsett, D. A., Willows, A. O. D. & Hoyle, G. (1969) Centrally generated nerve impulse sequences determining swimming behaviour in Tritonia. Nature 224:711–12. [GH]CrossRefGoogle Scholar
Dorsett, D. A., Willows, A. O. D. & Hoyle, G. (1973) The neuronal basis of behavior in Tritonia. IV. The central origin of a fixed action pattern demonstrated in the isolated brain. Journal of Neurobiology. 4:287300 [GH]CrossRefGoogle ScholarPubMed
Eggar, M. D. & Wyman, R. S. (1969) A reappraisal of reflex stepping in the cat. Journal of Physiology 202:501–16. [AIS]CrossRefGoogle Scholar
Fentress, J. C. (1976) Simpler Networks and Behavior. Sunderland, Mass.: Sinauer Associates. [JCF]Google Scholar
Fentress, J. C. (1977) The tonic hypothesis and the patterning of behavior. New York Academy of Sciences 290:370–95. [JCF]CrossRefGoogle ScholarPubMed
Fentress, W. B. Jr (1980) How can behavior be studied from a neuroethological perspective? In: Information processing in the nervous system, ed. Pinsker, H. M. & Willis, W. D. Jr, pp. 236–83. New York: Raven Press. [HMP]Google Scholar
Friesen, W. O., Poon, M. & Stent, G. S. (1978) Neural control of swimming in the medicinal leech. IV. Identification of a network of oscillatory interneurones. Journal of Experimental Biology 75:2543. [WOF, JCW]CrossRefGoogle Scholar
Friesen, W. O., Poon, M. & Stent, G. S. (1976) An oscillatory neuronal circuit generating a locomotory rhythm. Proceedings National Academy of Science, U.S.A. 73:3734–38. [DKH, AIS, TJW]CrossRefGoogle ScholarPubMed
Friesen, W. O. & Stent, G. S. (1977) Generation of a locomotory rhythm by a neural network with recurrent cyclic inhibition. Biological Cybernetics 28:2740. (RLC, WOF, JCW]CrossRefGoogle Scholar
Friesen, W. O. & Stent, G. S. (1978) Neural circuits for generating rhythmic movements. Annual Review of Biophysics and Bioengineering 7:3761. [RG, AIS]CrossRefGoogle ScholarPubMed
Geppetti, L. & Fiore, L. (1979) Electrotonic and chemical connections among small cells in the buccal ganglion of Aplysia. Archives Italiennes de Biologie 117:268–79. [SM]Google ScholarPubMed
Gerstein, G. L. & Perkel, D. H. (1972) Mutual temporal relations among spike trains. Biophysical Journal 12:453–73. [GLG]CrossRefGoogle ScholarPubMed
Gerstein, G. L., Perkel, D. H. & Subramanian, K. N. (1978) Identification of functionally related neural assemblies. Brain Research 140:4362. [GLG]CrossRefGoogle ScholarPubMed
Getting, P. A. (1975) Tritonia swimming: triggering of a fixed action pattern. Brain Research 96:128–33. [AIS]CrossRefGoogle ScholarPubMed
Getting, P. A. (1976) Afferent neurons mediating escape swimming of the marine mollusc Tritonia. Journal of Comparative Physiology 110:271–85. [AIS]CrossRefGoogle Scholar
Getting, P. A.; Lennard, P. R.; & Hume, R. I. (in press) Central pattern generator mediating swimming in Tritonia. I. Identification and synaptic interaction. Journal of Neurophysiology. [SG, AIS]Google Scholar
Getting, P. A. & Willows, A. O. D. (1974) Modification of neuron properties by electrotonic synapses. II. Burst formation by electrotonic synapses. Journal of Neurophysiology 37:858–68. [AIS]CrossRefGoogle ScholarPubMed
Gillete, R. & Davis, W. J. (1977) Role of the metacerebral giant neuron in the feeding behavior of Pleurobranchaea. Journal of Comparative Physiology 116:129–59. [SM]CrossRefGoogle Scholar
Gillette, R., Gillette, M. U. & Davis, W. J. (1980) Action potential broadening and endogenously sustained bursting are substrates of command ability in a feeding neuron of Pleurobranchaea. Journal of Neurophysiology 43:669–85. [RG]CrossRefGoogle Scholar
Gillette, R., Kovac, M. P. & Davis, W. J. (1978) Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite. Science 199:798801. [SM, AIS]CrossRefGoogle ScholarPubMed
Glaser, E. M. & Ruchkin, D. S. (1976) Principles of Neurobiological Signal Analysis, p. 471. New York: Academic Press. [HMP]Google Scholar
Gogolák, G., Stumpf, C., Petchse, H. & Sterc, J. (1968) The firing pattern of septal neurons and the form of the hippocampal theta wave. Brain Research 7:201–7. [CS]CrossRefGoogle ScholarPubMed
Gola, M. (1976) Electrical properties of bursting pacemaker neurons. In: Neurobiology of Invertebrates, ed. Salanki, J. Jr, pp. 381421. Budapest: Akademai Kiado. [HMP, AIS]Google Scholar
Goodman, C. S. (1978) Isogenic grasshoppers: genetic variability in the morphology of identified neurons. Journal of Comparative Neurology 182:681706. [RG]CrossRefGoogle ScholarPubMed
Gorski, R. A. (1979) Hormonal modulation of neuronal structure and function. In: The Neurosciences, 4th Study Program, ed. Schmitt, F. O. & Worden, F. G.. Cambridge, Mass.: MIT Press. [EH]Google Scholar
Granzow, B. & Kater, S. B. (1977) Identified higher-order neurons controlling the feeding motor program of Helisoma. Neuroscience 2:1049–63. [SM]CrossRefGoogle Scholar
Granzow, B., Kater, S. B. & Rowell, C. H. F. (1979) Comparison of serotonergic cerebral cells of Helisoma trivolvis with the metacerebral cells of some other gastropods. Neuroscience Abstracts 5:247. [SM]Google Scholar
Grillner, S. (1976) Some aspects on the descending control of the spinal circuits generating locomotor movements. In: Neural Control of Locomotion, ed. Herman, R. M., Grillner, S., Stein, P. S. G., & Stuart, D. G., pp. 351–76. New York: Plenum Press. [AIS]CrossRefGoogle Scholar
Grillner, S. (1977) On the neural control of movement–A comparison of different basic rhythmic behaviors. In: Function and Formation of Neural Systems, ed. Stent, C. S., pp. 197224. Berlin: Report of the Dahlem Workshop. [SCR, AIS]Google Scholar
Grillner, S. & Zangger, P. (1979) On the central generation of locomotion in the low spinal cat. Experimental Brain Research 34:241–62. [SG]CrossRefGoogle ScholarPubMed
Grinvald, A., Salzberg, B. M. & Cohen, L. B. (1977) Simultaneous recording from several neurons in an invertebrate central nervous system. Nature 268:140–42. [AIS]CrossRefGoogle Scholar
Harmon, L. D. (1964) Neuromimes: Action of a reciprocally inhibitory pair. Science 146:1323–25. [AIS]CrossRefGoogle ScholarPubMed
Harper, R. M. & McGinty, D. J. (1973) A technique for recording single neurons from unrestrained animals. In: Brain Unit Activity during Behavior, ed. Phillips, M. L., pp. 80104. Springfield. III.: Charles C. Thomas. [GLG]Google Scholar
Harth, E., Csermely, T. J., Beek, B. & Lindsay, R. D. (1970) Brain functions and neural dynamics. Journal of Theoretical Biology 26:93120. [EH]CrossRefGoogle ScholarPubMed
Harth, E., Lewis, N. S. & Csermely, T. J. (1975) Escape of Tritonia: Dynamics of neuromuscular control mechanisms. Journal of Theoretical Biology 55:210–28. [AIS]CrossRefGoogle Scholar
Hartline, D. K. (1979) Pattern generation in the lobster (Panulirus) stomato-gastric ganglion. II. Pyloric network simulation. Biological Cybernetics 33:223–36. [WOF, TJW]CrossRefGoogle ScholarPubMed
Herman, R. M., Grillner, S., Stein, P. S. G. & Stuart, D. G., eds. (1976) Neural Control of Locomotion, p.822. New York: Plenum Press. [HMP]CrossRefGoogle Scholar
Hille, B. (1967) The selective inhibition of delayed potassium currents in nerve by tetraethyl ammonium ion. Journal of General Physiology 50:12871302. [AIS]CrossRefGoogle Scholar
Hollerbach, J. M. (1977) A simple model of handwriting. 5th International Joint Conference in Artificial Intelligence. Cambridge, Mass.: MIT Press. [SG]Google Scholar
Holmes, P. J. (to appear) Phase locking and chaos in coupled limit cycle oscillators. Proceedings, Symposium on Recent Advances in Structural Dynamics, Southampton, England. [AHC]Google Scholar
Holst, E. von (1935) Erregungsbildung und Erregungsleitung im Fischrückenmark. Pflügers Archiv 235:345–59. [GW]CrossRefGoogle Scholar
Holst, E. von (1935) Über den Prozess der zentralnervösen Koordination. Pflügers Archiv 236:149–58. [FH]CrossRefGoogle Scholar
Holst, E. von (1936a) Vom Dualismus der motorischen und der automatisch-rhythmischen Funktion im Rückenmark und vom Wesen des automatischen Rhythmus. Pflügers Archiv 237:356–78. [FH, GW]CrossRefGoogle Scholar
Holst, E. von (1936b) Versuche zur Theorie der relativen Koordination. Pflügers Archiv 237:93121. [FH]CrossRefGoogle Scholar
Holst, E. von (1937) Vom Wesen der Ordnung im Zentralnervensystem. Naturwissen-schaften 25:625–31, und 641–47. [FH]CrossRefGoogle Scholar
Holst, E. von (1939) Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergebnisse der Physiologie 42:228306. [GW]CrossRefGoogle Scholar
Holst, E. von (1973) The behavioral physiology of animals and man: the collected papers of Erich von Holst. Vol. 1 Miami, Fla.: University of Miami Press. [GW]Google Scholar
Hoyle, G. (1975) Identified neurons and the future of neuroethology. Journal of Experimental Zoology 194:5174. [GH]CrossRefGoogle Scholar
Hubel, D. H., LeVay, S. & Wiesel, T. (1975) Mode of termination of retinotectal fibers in macaque monkey: an autoradiographic study. Brain Research 76:2540. [AIS]CrossRefGoogle Scholar
Jalife, J. & Antzelevitch, C. (1979) Phase resetting and annihilation of pacemaker activity in cardiac tissues. Science 206:695–97. [HMP]CrossRefGoogle Scholar
Jankowska, E., Jukes, M. G. M., Lund, S. & Lundberg, A. (1967) The effect of DOPA on the spinal cord. V. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiological Scandinavica 70:369–88. [SG]CrossRefGoogle Scholar
Jankowska, E., Jukes, M. G. M., Lund, S. & Lundberg, A. (1967) The effect of DOPA on the spinal cord. VI. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiologica Scandinavica 70:389402. [AIS]CrossRefGoogle Scholar
Kater, S. B. (1974) Feeding in Helisoma trivolvis: The morphological and physiological basis of a fixed action pattern. American Zoologist 14:1017–36. [AIS]CrossRefGoogle Scholar
Kater, S. B. & Rowell, C. H. F. (1973) Integration of sensory and centrally programmed components in generation of cyclic feeding activity of Helisoma trivolvis. Journal of Neurophysiology 36:142–55. [SM, SCR]CrossRefGoogle Scholar
Kandel, E. R. (1967) Cellular Studies of Learning. In: The Neurosiences First Study Program, ed. Quarton, G., pp. 666–89. New York: Rockefeller University Press. [AIS]Google Scholar
Kandel, E. R. (1976) Cellular Basis of Behavior. San Francisco: W. H. Freeman. [SCR, TJW]Google Scholar
Kaneko, C. R. S., Merickel, M. & Kater, S. B. (1978) Centrally programmed feeding in Helisoma: identification and characteristics of an electrically coupled premotor neuron network. Brain Research 146:121. [CRSK, MM]CrossRefGoogle Scholar
Kanz, J. E., Eberly, L. B., Cobbs, J. & Pinsker, H. M. (1979) Neuronal correlates of siphon withdrawal in freely-behaving Aplysia. Journal of Neurophysiology 42:1538–56. [HMP]CrossRefGoogle ScholarPubMed
Katchalsky, A. K., Rowland, V. & Bluementhal, R. (1974) Dynamic patterns of brain cell assemblies. Neuroscience Research Program Bulletin 12:1187. [JCF]Google ScholarPubMed
Kennedy, C., Des Rosiers, M. H., Jehle, J., Reivich, W., Sharpe, F. & Sokoloff, L. (1975) Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with [14C]deoxyglucose. Science 187:850–53. [AIS]CrossRefGoogle ScholarPubMed
Kennedy, D. (1971) Nerve cells and behavior. American Scientist 59:3642. [WJD]Google ScholarPubMed
Kling, U. & Székely, G. (1968) Simulation of rhythmic nervous activities. I. Function of networks with cyclic inhibitions. Kybernetik 5:89103. [GS]CrossRefGoogle ScholarPubMed
Koester, J., Mayeri, E., Liebeswar, G. & Kandel, E. R. (1974) Neural control of circulation in Aplysia. II. lnterneurons. Journal of Neurophysiology 37:476–96. [RG, AIS]CrossRefGoogle Scholar
Kristan, W. B. (1974) Neural control of swimming in the leech. American Zoologist 14:9911001. [AIS]CrossRefGoogle Scholar
Kupfermann, I. & Weiss, K. R. (1978) The command neuron concept. The Behavioral and Brain Sciences 1:339 [WJD]CrossRefGoogle Scholar
Luco, J. V. (1963) In: Perspectives in Biology, pp. 355–60. Amsterdam: Elsevier. [JVL]Google Scholar
Lynch, G. & Akers, R. M. (1979) Extrinsic influences on the development of afferent topographies in mammalian brain. In: The Neurosciences, 4th Study Program, ed. Schmitt, F. O. and Worden, F. G.. Cambridge, Mass.: MIT Press. [EH]Google Scholar
Macagno, E. R., Lopresti, V. & Levinthal, C. (1973) Structure and development of neuronal connections in isogenic organisms: variations and similarities in the optic system of Daphnia magna. Proceedings of the National Academy of Sciences 70:5761. [EH]CrossRefGoogle ScholarPubMed
Magni, F. & Pellegrino, M. (1978) Patterns of activity and the effects of activation of the fast conducting system on the behaviour of unrestrained leeches. Journal of Experimental Biology 76:123–35. [HMP]CrossRefGoogle ScholarPubMed
McCulloch, W. S. & Pitts, W. (1943) A logical calculus for ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5:115–33. [GH]CrossRefGoogle Scholar
McDougall, W. (1903) The nature of inhibitory processes within the nervous system. Brain 26:153–91. [WOF]CrossRefGoogle Scholar
Maynard, D. M. & Burke, W. (1966) Electrotonic junctions and negative feedback in the stomatogastric ganglion of the mud crab, Scylla serrata. American Zoologist 6:526. [RG]Google Scholar
Maynard, D. M. & Selverston, A. I. (1975) Organization of the stomatogastric ganglion of the spiny lobster. IV. The pyloric system. Journal of Comparative Physiology 100:161–82. [AIS]CrossRefGoogle Scholar
Maynard, D. M. & Walton, K. D. (1975) Effects of maintained depolarization of presynaptic neurons on inhibitory transmission in lobster neuropil. Journal of Comparative Physiology 97:215–43. [TJW]CrossRefGoogle Scholar
Mendelson, M. (1971) Oscillator neurons in crustacean ganglia. Science 171:1170–73. [AIS]CrossRefGoogle ScholarPubMed
Merickel, M. B., Eyman, D. & Kater, S. B. [1977] Analysis of a network of electrically coupled neurons producing rhythmic activity in the snail Helisoma trivolvis. Biomedical Engineering, 24:277–87. [CRSK]Google Scholar
Merickel, M. & Gray, R. (1980) Investigation of burst generation by the electrically coupled cyberchron network in the snail Helisoma using a single-electrode voltage clamp. Journal of Neurobiology 11:73102. [CRSK, MM, SM]CrossRefGoogle ScholarPubMed
Merickel, M. Kater, S. B. & Eyman, E. D. (1978) Burst generation by an electrically coupled network in the snail Helisoma: analysis using computer simulation. Brain Research 159:331–49. [CRSK, MM]Google Scholar
Miller, J. P. & Selverston, A. (1979a) Rapid killing of single neurons by irradiation of intracellularly injected dye. Science 206:702–4. [SG, AIS]CrossRefGoogle ScholarPubMed
Miller, J. P. & Selverston, A. (1979b) Rapid killing of single neurons by illumination of intracellularly injected dye. Society for Neuroscience Abstracts 5:496. [TJW]Google Scholar
Mitchell, S. J. & Ranck, J. B. Jr (1980) Generation of theta rhythm in medial entorhinal cortex of freely moving rats. Brain Research 189:4966. [GS]CrossRefGoogle ScholarPubMed
Möhl, B. & Nachtigall, W. (1978) Proprioceptive input on the locust flight motor revealed by muscle stimulation. Journal of Comparative Physiology 128:5765. [GW]CrossRefGoogle Scholar
Morris, J. & Maynard, D. M. (1970) Recordings from the stomatogastric nervous system in intact lobsters. Comparative Biochemistry and Physiology 33:969–74. [HMP]CrossRefGoogle Scholar
Mulloney, B. & Selverston, A. I. (1974) Organization of the stomatogastric ganglion of the spiny lobster. I. Neurons driving the lateral teeth. Journal of Comparative Physiology 91:132. [AIS]CrossRefGoogle Scholar
Nicolis, G. & Prigogine, I. (1977) Self Organization in Nonequilibrium Systems. New York: John Wiley and Sons. [JFC]Google Scholar
Orlovsky, G. N. & Shik, M. L. (1976) A neurophysiological analysis of the cat locomotive system. In: International Review of Physiology, ed. Porter, R., vol. 10, Neurophysiology 11, pp. 281317. Baltimore: University Park Press. [AIS]Google Scholar
Ornberg, R. L., Neale, E. A., Smith, C. B., Yarowsky, P. & Bowers, L. M.Radioautographic localization of glucose utilization by neurons in culture. Journal of Cell Biology 83:142a. [SCR]Google Scholar
Patterson, P. H. (1979) Epigenetic influences in neuronal development. In: The Neurosciences, 4th Study Program, ed. Schmitt, F. O. and Worden, F. G.. Cambridge, Mass.: MIT Press. [EH]Google Scholar
Pavlidis, T. (1973) Biological Oscillators: Their Mathematical Analysis, pp.207. New York: Academic Press. [HMP]Google Scholar
Pavlidis, T. & Pinsker, H. M. (1977) Introduction. In: Symposium on Oscillator Theory and Neurophysiology. Federation Proceedings 36:2033–35. [HMP]Google Scholar
Pearson, K. & Fourtner, C. R. (1975) Nonspiking interneurons in the walking system of the cockroach. Journal of Neurophysiology 38:3352. [AIS]CrossRefGoogle ScholarPubMed
Pearson, K. G. & Goodman, C. S. (1979) Correlation of variability in structure with variability in synaptic connections of an identified interneuron in locusts. Journal of Comparative Neurology 184:141–66. [RG]CrossRefGoogle ScholarPubMed
Perkel, D. H., Gerstein, G. L. & Moore, G. P. (1967) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophysical Journal 7:419–40. [GLG]CrossRefGoogle ScholarPubMed
Perkel, D. H., Gerstein, G. L., Smith, M. S. & Tatton, W. G. (1975) Nerve impulse patterns. Brain Research 100:271–96. [GLG]CrossRefGoogle ScholarPubMed
Perkel, D. H. & Moore, G. P. (1965) “A defense of neural modelling” reply to commentary by L. Fein. In: Biophysics and Cybernetic Systems, ed. Callahan, A., Maxfield, M., and Fogel, L. J.. Washington, D. C.: Spartan Books. [DKH]Google Scholar
Perkel, D. H. & Mulloney, B. (1974) Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science 185:181–83. [RG, AIS, TJW]CrossRefGoogle ScholarPubMed
Peterson, E. L. & Jones, M. D. R. (1979) Do circadian oscillators ever stop in constant light? Nature 280:677–79. [HMP]CrossRefGoogle ScholarPubMed
Pinsker, H. M. (1977a) Aplysia bursting neurons as endogenous oscillators. 1. Phase response curves for pulsed inhibitory synaptic input. Journal of Neurophysiology 40:527–43. [HMP]CrossRefGoogle ScholarPubMed
Pinsker, H. M. (1977b) Aplysia bursting neurons as endogenous oscillators. II. Synchronization and entrainment by pulsed inhibitory synaptic input. Journal of Neurophysiology 40:544–56. [HMP]CrossRefGoogle ScholarPubMed
Pinsker, H. M. (1980) Neuroethological analysis of information processing during behavior. In: Information Processing in the Nervous System, ed. Pinsker, H. M. and Willis, W. D. Jr, pp. 285312. New York: Raven Press. [HMP]Google Scholar
Pinsker, H. M. and Bell, J. (1980, in press) Phase plane description of endogenous neuronal oscillators in Aplysia. Biological Cybernetics. [HMP]Google Scholar
Poon, M., Friesen, W. O. & Stent, G. S. (1978) Neural control of swimming in the medicinal leech. V. Connexions between the oscillatory interneurons and the motor neurones. Journal of Experimental Biology 75:4563. [WOF]CrossRefGoogle ScholarPubMed
Pribram, K. H. (1974) How is it that sensing so much we can do so little? In: The neurosciences: third study program, ed. Schmitt, R. O. and Worden, F. G., pp. 249–61. Cambridge, Mass.: MIT Press. [TJW]Google Scholar
Rand, R. H. & Holmes, P. J. (to appear) Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. International Journal of Nonlinear Mechanics. [AHC]Google Scholar
Raper, J. A. (1979) Nonimpulse-mediated synaptic transmission during the generation of a cyclic motor program. Science 205:304–6. [RG, TJW]CrossRefGoogle ScholarPubMed
Reingold, S. C. & Gelperin, A. (1980) Feeding motor program in Limax. II. Modulation by sensory inputs in intact animals and isolated central nervous systems. Journal of Experimental Biology 85:120. [SM, SCR]CrossRefGoogle ScholarPubMed
Reingold, S. C. & Sejnowski, T. J. (1980) [3H)-2-Deoxyglucose uptake in the molluscan central nervous system. Society for Neuroscience Abstracts 6:74. [SCR]Google Scholar
Reingold, S. C., Sejnowski, T., Gelperin, A. & Kelley, D. (1980, submitted) [3H]-2-deoxyglucose autoradiography in a molluscal nervous system. [SCR]CrossRefGoogle Scholar
Roeder, K. D. (1948) Organization of the ascending giant fiber system in the cockroach (Periplaneta americana L.). Journal of Experimental Zoology 108:243–62. [FD]CrossRefGoogle Scholar
Rovainen, C. M. (1979) Neurobiology of lampreys. Physiological Reviews 59:1007–77. [AHC]CrossRefGoogle ScholarPubMed
Russell, D. F. & Hartline, D. K. (1978) Bursting neural networks: a reexamination. Science 200:453–56. [AHC, RLC, RG, MM, SCR, TJW]CrossRefGoogle ScholarPubMed
Salzberg, B. M., Grinvald, A., Cohen, L. B., Davila, H. V. & Ross, W. N. (1977) Optical monitoring of neuronal activity in an invertebrate central nervous system. Journal oj Neurophysiology 40:1281–92. [GLG]CrossRefGoogle Scholar
Schmitt, F. O., Dev, P. & Smith, B. H. (1976) Electronic processing of information by brain cells. Science 193:114–20. [SG]CrossRefGoogle Scholar
Schwindt, P. & Crill, W. (1980) Role of a persistent inward current in moto-neuron bursting during spinal seizures. Journal of Neurophysiology 43:12961318. [CRSK]CrossRefGoogle Scholar
Selverston, A. I. (1976) Neuronal mechanisms for rhythmic motor pattern generation in a simple system. In: Neural Control of Locomotion, ed. Herman, R. M., Grillner, S., Stein, P. S. G., & Stuart, D. G., pp. 377400. New York: Plenum Press. [AIS]CrossRefGoogle Scholar
Selverston, A. I. & Mulloney, B. (1974) Organization of the stomatogastric ganglion of the spiny lobster. II. Neurons driving the medial tooth. Journal of Comparative Physiology 91:3351. [TJW]CrossRefGoogle Scholar
Selverston, A. I. & Remler, M. D. (1972) Neural geometry and activation of crayfish fast flexor motoneurons. Journal of Neurophysiology 35:797814. [AIS]CrossRefGoogle ScholarPubMed
Selverston, A. I., Russell, D. F., Miller, J. P. & King, D. G. (1976) The stomatogastric nervous system; structure and function of a small neural network. Progress in Neurobiology 6:175. [RLC, RG, AIS]Google Scholar
Sejnowski, T. J., Reingold, S. C., Kelley, D. B. & Gelperin, A. (submitted for publication). Localization of [3H]-2-deoxyglucose in single molluscan neurons. [SCR]Google Scholar
Senseman, D. & Gelperin, A. (1974) Comparative aspects of the morphology and physiology of a single identifiable neuron in Helix aspersa, Limax maximus, and Ariolimax californica. Malacological Review 7:5152. [SM]Google Scholar
Shepherd, G. M. (1974) The Synaptic Organization of the Brain: An Introduction. New York: Oxford University Press. [JCF]Google Scholar
Siegler, M. V. S. (1977) Motor neurone coordination and sensory modulation in the feeding system of the mollusc Pleurobranchaea califomica. Journal of Experimental Biology 71:2748. [SM, SCR]CrossRefGoogle Scholar
Siegler, M. V. S. & Burrows, M. (1980) Non-spiking interneurones and local circuits. Trends in Neurosciences 3:7377. [SC]CrossRefGoogle Scholar
Sokoloff, L., Reivich, M., Patlak, C. S., Petigrew, K. D., Des Rosiers, M. & Kennedy, C. (1974) The [14C]deoxyglucose method for the quantitative determination of local cerebral glucose consumption. Proceedings of the Fifth Meeting of the American Society of Neurochemistry, p. 86. [AIS]Google Scholar
Spira, M. E. & Bennett, M. V. L. (1972) Synaptic control of electrotonic coupling between neurons. Brain Research 37:294300. [AIS]CrossRefGoogle ScholarPubMed
Spira, M. E., Spray, D. C. & Bennett, M. V. L. (1976) Electrotonic coupling: Effective sign reversal by inhibitory neurons. Science 194:1065–67. [AIS]CrossRefGoogle ScholarPubMed
Stein, P. S. G. (1976) Mechanisms of interlimb phase control. In: Neural Control of Locomotion, ed. Herman, R. M., Grillner, S., Stein, P. S. G., & Stuart, D. G., pp. 465–88. New York: Plenum Press. [AIS]CrossRefGoogle Scholar
Stent, G. S. (1969) The Coming of the Golden Age. New York: Natural History Press. [CML]Google Scholar
Susswein, A. J. & Kupfermann, I. (1976) The stimulus control of biting in Aplysia. Journal of Comparative Physiology 108:7596. [SCR]CrossRefGoogle Scholar
Székely, G. (1965) Logical network for controlling limb movements in urodela. Acta Physiological Academy of Science, Hungary 27:285–89. [AIS]Google Scholar
Székely, G. & Czéh, G. (1976) Organization of locomotion. In: Frog Neurobiology, ed. Llinás, R. and Precht, W., pp. 765–92. Berlin and Heidelberg: Springer-Verlag. [GS]CrossRefGoogle Scholar
Tameyasu, T. (1976) Intracellular potentials in the small cells and cellular interuction in the cardiac ganglion of the lobster Panulirus japonicus. Comparative Biochemistry and Physiology 54A:191–96. [AIS]CrossRefGoogle Scholar
Thompson, W. J. & Stent, G. S. (1976) Neuronal control of heartbeat in the medicinal leech, I. Generation of the vascular constriction rhythm by heart motor neurons. Journal of Comparative Physiology 111:261–79. [RLC. AIS]CrossRefGoogle Scholar
Thompson, W. J. & Stent, G. S. (1976b) Neuronal control of heartbeat in the medicinal leech. II. Intersegmental coordination of heart motor neuron activity by heart interneurons. Journal of Comparative Physiology 111:281307. [RLC]CrossRefGoogle Scholar
Thompson, W. J. & Stent, G. S. (1976c) Neuronal control of heartbeat in the medicinal leech. III. Synaptic relations of the heart interneurons. Journal of Comparative Physiology 111:309–33. [RLC]CrossRefGoogle Scholar
Tinbergen, N. (1951) The study of instinct. Oxford: Oxford University Press. [GH]Google Scholar
Truman, J. W. (1978) Hormonal release of stereotyped motor programmes from the isolated nervous system of the Cecropia silkmoth. Journal of Experimental Biology 74:151–73. [SCR]CrossRefGoogle Scholar
Treistman, S. N. (1979) Duplication of a spontaneously active neuron in Aplysia. Journal of Neurobiology 10:325–30. [RG]CrossRefGoogle ScholarPubMed
Treistman, S. N. & Schwartz, J. H. (1976) Functional constancy in Aplysia nervous systems with anomalously duplicated identified neurons. Brain Research 109:607–14.CrossRefGoogle ScholarPubMed
van Cisbergen, J. A. M. & Robinson, D. A. (1977) Generation of micro-and macrosaccades by burst neurons in the monkey. In: Control of gaze by brain stem neurons. Developments in neuroscience, vol. 1, ed. Baker, R. & Berthoz, A., pp. 301–8. Amsterdam & New York: Elsevier/North-Holland Biomedical Press. [CRSK]Google Scholar
Viebert, J. F., Bertrand, F., Denavit-Saubié, M., & Hugelin, A. (1976) Three dimensional representation of bulbo-pontine respiratory networks architecture from unit density maps. Brain Research 114:227–44. [GS]CrossRefGoogle Scholar
von der Porlen, K., Redmann, G., Rothman, B. & Pinsker, H. M. (1980) Neuroethological studies of freely swimming Aplysia brasiliana. Journal of Experimental Biology 84:245–57. [HMP]CrossRefGoogle Scholar
Warshaw, H. S. & Hartline, D. K. (1976) Simulation of network activity in stomatogastric ganglion of the spiny lobster, Panulirus. Brain Research 110:259–72. [TJW]CrossRefGoogle ScholarPubMed
Weeks, J. C. (1980; submitted) The neuronal basis of leech swimming: Separation of swim initiation, pattern generation and intersegmental coordination by selective lesions. Journal of Neurophysiology. [RLC, WOF, DKH, AIS. JCW]Google Scholar
Weeks, J. C. (1980a) The Roles of Identified Interneurons in Initiating and Generating the Swimming Motor Pattern of Leeches. Doctoral dissertation. University of California at San Diego, La Jolla, Calif. [JCW]Google Scholar
Weeks, J. C. & Kristan, W. B. Jr (1978) Initiation, maintenance and modulation of swimming in the medicinal leech by the activity of a single neurone. Journal of Experimental Biology 77:7188. [JCW]CrossRefGoogle Scholar
Weiss, K. R., Cohen, J. & Kupfermann, I. (1975) Modulatory command function of the metacerebral cell on feeding behavior in Aplysia. Federation Proceedings of the Federation of American Societies of Experimental Biology 34:418. [SM]Google Scholar
Weiss, K. R., Cohen, J. L., & Kupfermann, I. (1978) Modulatory control of buccal musculature by a serotonergic neuron (metacerebral cell) in Aplysia. Journal of Neurophysiology 41:181203. [SM]CrossRefGoogle ScholarPubMed
Weiss, K. R. & Kupfermann, I. (1976) Homology of the giant serotonergic neurons (metacerebral cells) in Aplysia and pulmonate molluscs. Brain Research 117:3349. [SM]CrossRefGoogle ScholarPubMed
Wendler, G. (1965) The co-ordination of walking movements in arthropods. Symposia of the Society for Experimental Biology 20:229–49. [GW]Google Scholar
Wendler, G. (1974) The influence of proprioceptive feedback on locust flight co-ordination. Journal of Comparative Physiology 88:173200. [HMP, GW]CrossRefGoogle Scholar
Wendler, G. (1978) Lokomotion: das Ergebnis zentral-peripherer Interaktion. Verh. Dtsch. Zool. Ces. 1978:8096. [GW]Google Scholar
Westin, J., Langberg, J. J. & Camhi, J. M. (1977) Responses of giant interneurons of the cockroach Periplaneta americana to wind puffs of different direction and velocities. Journal of Comparative Physiology 121:307–24. [FD]CrossRefGoogle Scholar
Willows, A. O. D. (1976) Trigger neurons in the mollusk Tritonia. In: Neural Control of Locomotion, ed. Herman, R. M., Grillner, S., Stein, P. S. G., & Stuart, D. G., pp. 327–50. New York: Plenum Press. [AIS]CrossRefGoogle Scholar
Willows, A. O. D., Dorsett, D. A. & Hoyle, G. (1973) The neuronal basis of behavior in Tritonia. III. Neuronal mechanism of a fixed action pattern. Journal of Neurobiology 4:255–85. [AIS]CrossRefGoogle Scholar
Wilson, D. M. (1961) The central nervous control of flight in a locust. Journal of Experimental Biology 38:471–79. [AIS, GW]CrossRefGoogle Scholar
Wilson, D. M. (1964) The origin of the flight-motor command in grasshoppers. In: Neural Theory and Modeling, ed. Reiss, R. F., pp. 331–45. Stanford, Calif.: Stanford University Press. [AIS]Google Scholar
Wilson, D. M. & Waldron, I. (1968) Models for the generation of the motor output pattern in the flying locust. Proceedings of Institute of Electrical & Electronics Engineers 56:1058–64. [AIS]CrossRefGoogle Scholar
Wilson, H. R. & Cowan, J. D. (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Kybernetik 12:124. [EH]Google ScholarPubMed
Wine, J. J. & Krasne, F. B. (1972) The organization of escape behavior in crayfish. Journal of Experimental Biology 56:118. [HMP]CrossRefGoogle ScholarPubMed
Winfree, A. (1977) Phase control of neural pacemakers. Science 197:761–63. [HMP]CrossRefGoogle ScholarPubMed
Wong, R. & Harth, E. (1973) Stationary states and transients in neural populations. Journal of Theoretical Biology 40:77106. [EH]CrossRefGoogle ScholarPubMed