Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T11:21:51.776Z Has data issue: false hasContentIssue false

Species, climate and fertilizer effects on grass fibre and protein in tropical environments

Published online by Cambridge University Press:  11 May 2009

H. TRAN*
Affiliation:
Faculty of Animal Sciences and Veterinary Medicine, Hanoi University of Agriculture – Animal Husbandry, Gia Lam, Hanoi, Vietnam Cirad – UPR Systèmes d'élevage, Saint PierreF-97410, France
P. SALGADO
Affiliation:
Cirad – UPR Systèmes d'élevage, F-34398, France
P. LECOMTE
Affiliation:
Cirad – UPR Systèmes d'élevage, Saint PierreF-97410, France
*
*To whom all correspondence should be addressed. Email: hiep26@yahoo.com

Summary

A 3-year experiment (2005–07) was conducted on Reunion Island (France) to evaluate the effect of species, climate and fertilization levels on fibre and protein fractions of tropical (C4; Chloris gayana and Pennisetum clandestinum) and temperate (C3; Dactylis glomerata and Lotium multiflorum) grasses. A near infrared reflectance spectroscopy (NIRS) prediction referential was developed to estimate neutral detergent fibre (NDF), acid detergent fibre (ADF), crude protein (CP), NDF insoluble protein (NDF-IP) and ADF insoluble protein (ADF-IP). The NIRS equations were then used to screen many regrowth grass samples collected at heading stage continuously for 3 years to evaluate their changes during the seasons. Results showed that grass species differed significantly in fibre and protein fractions. NDF, ADF and ADF-IP were the lowest in D. glomerata/L. multiflorum and the highest in C. gayana. The wet season was associated with higher NDF, ADF and NDF-IP in D. glomerata/L. multiflorum and lower NDF-IP in P. clandestinum. Fertilization increased the CP in C. gayana and the NDF-IP in P. clandestinum, but decreased the ADF-IP of both C. gayana and D. glomerata/L. multiflorum. Growth rate strongly changed NDF, ADF, NDF-IP and ADF-IP although no change in CP appeared. In general, NDF, ADF and NDF-IP increased with the growth rate. In contrast, the ADF-IP content decreased from slow to fast growth rate in C. gayana and D. glomerata/L. multiflorum. Growth rate changes were thus considered as a general indicator for fibre and protein fraction variations of these grasses.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ball, D., Collins, M., Lacefield, G., Martin, N., Mertens, D., Olson, K., Putnam, D., Undersander, D. & Wolf, M. (2001). Understanding Forage Quality. American Farm Bureau Federation Publication 1-01. Park Ridge, IL: American Farm Bureau Federation. Available online at: http://foragesoftexas.tamu.edu/pdf/ForageQuality.pdf (verified 16 March 2009).Google Scholar
Bindelle, J., Sinnaeve, G., Dardenne, P., Leterme, P. & Buldgen, G. (2005). A rapid estimation of nitrogen bound to neutral detergent fibre in forages by near infrared reflectance spectroscopy. In Proceedings of the XXth International Grassland Congress, 26 June−1 July 2005, University College Dublin (Eds O'Mara, F. P., Wilkins, R. J., Mannetje, L., Lovett, D. K., Rogers, P. A. M. & Boland, T. M.), p. 259. The Netherlands: Wageningen Academic Press.Google Scholar
Bruinenberg, M. H., Valk, H., Korevaar, H. & Struik, P. C. (2001). Factors affecting digestibility of temperate forages from seminatural grasslands: a review. Grass and Forage Science 57, 292301.Google Scholar
Buxton, D. R. (1995). Growing quality forages under variable environmental conditions. In Proceedings of the Western Canadian Dairy Seminar (Ed. Kenelly, J. J.). Edmonton, AB, Canada: University of Alberta. Available online at: http://www.wcds.afns.ualberta.ca/Proceedings/1995/wcd95123.htm (verified 16 March 2009).Google Scholar
Castro, P. (1997). Use of near infrared reflectance spectroscopy (NIRS) for forage analysis. In Lowland Grasslands of Europe: Utilization and Development (Ed. Fisher, G.), pp. 225228. FAO/CIHEAM, Interregional and Cooperative Research and Development Network for Pastures and Fodder Crop Production; REU Technical Series (FAO) No. 64. Rome, Italy: FAO. Available online at: http://www.fao.org/DOCREP/006/AD236E/ad236e14.htm (verified 16 March 2009).Google Scholar
Coleman, S. W. & Henry, D. A. (2002). Nutritive value of herbage. In Sheep Nutrition (Eds Freer, M. & Dove, H.), pp. 126. Wallingford, UK: CAB international.Google Scholar
Cuomo, G. J. & Anderson, B. E. (1996). Nitrogen fertilization and burning effects on rumen protein degradation and nutritive value of native grasses. Agronomy Journal 88, 439442.Google Scholar
De Peters, E. J. (1994). Forage Quality Implication. Davis, CA: University of California, Department of Animal Science.Google Scholar
Elwakeel, E. A., Titgemeyer, E. C., Drouillard, J. S. & Armendariz, C. K. (2007). Evaluation of ruminal nitrogen availability in liquid feeds. Animal Feed Science and Technology 137, 163181.Google Scholar
Faverdin, P., M'hamed, D., Rico-Gomez, M. & Vérité, R. (2003). La nutrition azotée influence l'ingestion chez la vache laitière. INRA Production Animale 16, 2737.Google Scholar
Ford, C. W., Morrison, I. M. & Wilson, J. R. (1979). Temperature effects on lignin, hemicellulose and cellulose in tropical and temperate grasses. Australian Journal of Agriculture Research 30, 621633.Google Scholar
Fortina, R., Malfatto, V., Mimosi, A., Guo, K. & Tartari, E. (2003). The establishment of a database of Italian feeds for the Cornell Net Carbohydrate and Protein System. Italian Journal of Animal Science 2, 171179.Google Scholar
Fox, D. G., Tylutki, T. P., Tedeschi, L. O., Amburgh, M. E. V., Chase, L. E., Pell, A. N., Overton, T. R. & Russell, J. B. (2003). The Net Carbohydrate and Protein System for Evaluating Herd Nutrition and Nutrient Excretion: Model Documentation. CNCPS version 5.0. Mimeograph No. 213. Ithaca, NY: Animal Science Department, Cornell University.Google Scholar
Göhl, B., Speedy, A. & Waltham, N. (1998). Tropical Feeds. Rome, Italy: FAO. version 8.Google Scholar
Harris, B. Jr. (1992). The Importance of Fiber in Feeding Dairy Cattle. Dairy Production Guide. Florida, USA: Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.Google Scholar
Harris, B. Jr. (2003). Nonstructural and Structural Carbohydrates in Dairy Cattle Rations. Dairy Production Guide. Florida, USA: Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.Google Scholar
Hoffman, P. C., Brehm, N. M., Bauman, L. M., Peters, J. B. & Undersander, D. J. (1999). Prediction of laboratory and in situ protein fractions in legume and grass silages using near-infrared reflectance spectroscopy. Journal of Dairy Science 82, 764770.CrossRefGoogle ScholarPubMed
Hoover, W. H. & Stokes, S. R. (1991). Balancing carbohydrates and proteins for optimum rumen microbial yield. Journal of Dairy Science 74, 36303644.Google Scholar
Jarrige, R., Ruckebusch, Y., Demarquilly, C., Farce, M. H. & Journet, M. (1995). Nutrition des Ruminants Domestiques: Ingestion et Digestion. Paris, France: INRA.Google Scholar
Johnson, C. R., Reiling, B. A., Mislevy, P. & Hall, M. B. (2001). Effects of nitrogen fertilization and harvest date on yield, digestibility, fiber, and protein fractions of tropical grasses. Journal of Animal Science 79, 24392448.CrossRefGoogle ScholarPubMed
Juarez Lagunes, F. I., Fox, D. G., Blake, R. W. & Pell, A. N. (1999). Evaluation of tropical grasses for milk production by dual-purpose cows in tropical Mexico. Journal of Dairy Science 82, 21362145.Google Scholar
LECO (2003). Organic Application Note: Carbon and Nitrogen in Plant Tissue. LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI 49085-2396, USA.Google Scholar
Lyons, R. K., Machen, R. & Forbes, T. D. A. (1997). Why Range Forage Quality Changes. College Station, TX: Texas Agricultural Extension Service, The Texas A&M University System. Available online at http://animalscience.tamu.edu/images/pdf/beef/beef-why-range-quality-changes.pdf (verified 17 March 2009).Google Scholar
Miller, R. C., Ffrench, D. L., McDonald, D. C. & Jennings, P. G. (2004). Yield and Nutritive Value of African Star Grass and Tifton 85 Bermuda Grass Pastures on Commercial Dairy Farms in Jamaica. Kingston, Jamaica: Jamaica Dairy Development Board, Ministry of Agriculture, Jamaica.Google Scholar
Mueller, S. C. & Orloff, S. B. (1994). Environmental factors affecting forage quality. In Proceedings of the 24th California Alfalfa Symposium, 8–9 December 1994, Redding, California, pp. 5662. Davis, CA: University of California.Google Scholar
NRC (2001). Nutrient Requirements of Dairy Cattle. 7th Revised edition.Washington, DC: National Academic Press.Google Scholar
Park, R. S., Gordon, F. J., Agnew, R. E., Barnes, R. J. & Steen, R. W. J. (1997). The use of near infrared reflectance spectroscopy on dried samples to predict biological parameters of grass silage. Animal Feed Science and Technology 68, 235246.Google Scholar
Park, R. S., Agnew, R. E., Gordon, F. J. & Steen, R. W. J. (1998). The use of near infrared reflectance spectroscopy (NIRS) on undried samples of grass silage to predict chemical composition and digestibility parameters. Animal Feed Science and Technology 72, 155167.Google Scholar
Poppi, D. P., McLennan, S. R., Bediye, S., de Vega, A. & Zorrilla-Rios, J. (1999). Forage quality: Strategies for increasing nutritive value of forages. In Proceedings of the XVIII International Grasslands Congress, Calgary, Canada (Eds Buchanan-Smith, J. G., Bailey, L. D. & McCaughey, P.), pp. 307322. Guelph, ON, Canada: International Grassland Society.Google Scholar
Reid, R. L., Jung, G. A. & Thayne, W. V. (1988). Relationships between nutritive quality and fibre components of cool season and warm season forages: a retrospective study. Journal of Animal Science 66, 12751291.CrossRefGoogle ScholarPubMed
Reeves, J. B. (1997). The use of mid infrared diffuse reflectance spectroscopy to determine quantitatively the chemical composition of tall fescue. Journal of Dairy Science 80, 24542465.Google Scholar
Rogers, J. R., Harvey, R. W., Poore, M. H., Mueller, J. P. & Barker, J. C. (1996). Application of nitrogen from swine lagoon effluent to bermudagrass pastures: seasonal changes in forage nitrogenous constituents and effects of energy and escape protein supplementation on beef cattle performance. Journal of Animal Science 74, 11261133.Google Scholar
SAS Institute (2000). SAS language and procedure: Usage. Version 8. 1st ed. SAS Inst., Cary, NC.Google Scholar
Schroeder, J. W. (2004). Forage Nutrition for Ruminants. Fargo, ND: NDSU Extension Service, North Dakota State University. Available online at http://www.ag.ndsu.edu/pubs/ansci/dairy/as1250w.htm (verified 17 March 2009).Google Scholar
Schwab, C. G., Tylutki, T. P., Ordway, R. S., Sheaffer, C. & Stern, M. D. (2003). Characterization of proteins in feeds. Journal of Dairy Science 86, E88–E103.Google Scholar
Seguin, P., Mustafa, A. F. & Sheaffer, C. C. (2002). Effects of soil moisture deficit on forage quality, digestibility, and protein fractionation of Kura clover. Journal of Agronomy and Crop Science 188, 260266.Google Scholar
Shenk, J. S. & Westerhaus, M. O. (1993). Monograph: Analysis of Agriculture and Food Products by Near Infrared Reflectance Spectroscopy. Port Matilda, PA: Infrasoft International.Google Scholar
Sinnaeve, G., Dardenne, P., Agneessens, R. & Biston, R. (1994). The use of NIRS for the analysis of fresh grass silage. Journal of Near Infrared Spectrometry 2, 7984.Google Scholar
Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: carbohydrate and protein availability. Journal of Animal Science 70, 35623577.Google Scholar
Stuth, J., Jama, A. & Tolleson, D. (2003). Direct and indirect means of predicting forage quality through near infrared reflectance spectroscopy. Field Crops Research 84, 4556.Google Scholar
Tedeschi, L. O., Pell, A. N., Fox, D. G. & Llames, C. R. (2001). The amino acid profiles of the whole plant and of four plant residues from temperate and tropical forages. Journal of Animal Science 79, 525532.Google Scholar
Tham, H. T., Man, N. V. & Preston, T. R. (2008). Estimates of protein fractions of various heat-treated feeds in ruminant production. Livestock Research for Rural Development 20 (Supplement). Available online at http://www.lrrd.org/lrrd20/supplement/tham2.htm (retrieved 12 November 2008; verified 17 March 2009).Google Scholar
Tillard, E. (2007). Approche globale des facteurs associés à l'infertilité et l'infécondité chez la vache laitière: importance relative des facteurs nutritionnels et des troubles sanitaires dans les élevages de l'île de la Réunion. PhD thesis, l'Université de Montpellier.Google Scholar
Trlica, M. J. (1999). Grass Growth and Response to Grazing. Fort Collins, CO: Colorado State University.Google Scholar
Valdés, C., Andres, S., Giraldez, F. J., García, R. & Calleja, A. (2006). Potential use of visible and near infrared reflectance spectroscopy for the estimation of nitrogen fractions in forages harvested from permanent meadows. Journal of the Science of Food and Agriculture 86, 308314.Google Scholar
Van Soest, P. J., Roberson, J. B. & Lewis, B. A. (1991). Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar