Nutrition Research Reviews

Research Article

The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview

J. A. Decuyperea1 and N. A. Diericka1 c1

a1 Department of Animal Production, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Proefhoevestraat 10, B-9090 MELLE, Belgium

Abstract

In the search for alternatives to banned in-feed antibiotics, a concept was developed based on studies with medium-chain fatty acid-containing triacylglycerols (MCTAG) and selected lipases for in situ generation of diacylglycerols, monoacylglycerols and medium-chain fatty acids (MCFA) in the stomach and proximal gut of piglets. MCFA are known to have strong antibacterial properties but can hardly be used as such because of their repellent odour and taste. Those problems could be overcome by the generation of MCFA in situ. The concept was tested in vitro and validated in vivo with gastric-cannulated piglets and under field conditions, including effects on zootechnical performance, with classical antibacterial growth promoters or organic acids acting as positive controls. Furthermore, the metabolic and dietary constraints on the nutritional and nutritive use of MCTAG and/or MCFA (for example, the effects on digestive physiology, gut flora, feed intake, performance, carcass composition) are reviewed. The role of natural preduodenal lipase activity, the presence of endogenous plant lipase activity in raw materials and the feasibility for exogenous lipase addition to the feed are discussed, in order to optimize the concept. The present review illustrates the similarity of the action of MCFA and commonly used antimicrobials on the flora (total flora, Gram-positive flora, Gram-negative flora, potential pathogens) and epithelial morphology and histology in the foregut. These observations are believed to be the basis for obtaining optimal growth performances. In addition, these naturally occurring antimicrobial agents have little or no human or animal toxicity and induce no problems of residues and cross-resistance induction. They are proposed as a valuable alternative to in-feed antibiotics, used for growth promotion, and even for the preventive and curative treatment of gastrointestinal diseases.

Correspondence:

c1 *Corresponding author: Dr N. A. Dierick, fax +32 9 264 90 99, email Noel.Dierick@UGent.be