Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T04:51:19.327Z Has data issue: false hasContentIssue false

Vertical transmission of Toxoplasma gondii in Australian marsupials

Published online by Cambridge University Press:  24 June 2009

N. PARAMESWARAN*
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
R. M. O'HANDLEY
Affiliation:
Environmental Biotechnology CRC, Murdoch University, Murdoch, WA 6150, Australia
M. E. GRIGG
Affiliation:
Molecular Parasitology Unit, Laboratory of Parasitic Diseases, National Institutes of Health, NIAID, 4 Center Drive, Bethesda, MD 20892, USA
A. WAYNE
Affiliation:
Department of Environment and Conservation, Manjimup, WA 6258, Australia
R. C. A. THOMPSON
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
*
*Corresponding author: WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch WA 6150, Australia. Tel: +61 893602690. Fax: +61 893104144. E-mail: nevi.parameswaran@gmail.com

Summary

To date, little is known about the dynamics of vertical transmission of Toxoplasma gondii in Australian marsupials. Studies in mice demonstrate that vertical transmission of T. gondii is common and that chronically infected mice can transmit T. gondii to successive generations. In this study, PCR and immunohistochemistry were used to detect T. gondii in chronically infected marsupial dams and their offspring. T. gondii was detected in the unfurred pouch young of 2 out of 10 chronically infected western grey kangaroos (Macropus fuliginosus) and in the unfurred pouch young of a brush-tailed bettong (Bettongia penicillata). Results of the study suggest that vertical transmission of T. gondii can occur in chronically infected Australian marsupials.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bettiol, S. S., Obendorf, D. L., Nowarkowski, M. and Goldsmid, J. M. (2000). Pathology of experimental toxoplasmosis in eastern barred bandicoots in Tasmania. Journal of Wildlife Diseases 36, 141144.Google Scholar
Beveridge, I. (1993). Marsupial parasitic diseases. In Zoo and Wild Animal Medicine: Current Therapy (ed. Fowler, M.), pp. 288293. W.B. Saunders, Phildelphia, PA, USA.Google Scholar
Boorman, G. A., Kollias, G. V. and Taylor, R. F. (1977). An outbreak of toxoplasmosis in wallaroos (Macropus robustus) in a California zoo. Journal of Wildlife Diseases 13, 6468.Google Scholar
Bretagne, S., Costa, J. M., Vidaud, M., Tran, J., Nhieu, V. and Fleury-Feith, J. (1993). Detection of Toxoplasma gondii by competitive DNA amplification of bronchoalveolar lavage samples. Journal of Infectious Diseases 168, 15851588.Google Scholar
Canfield, P. J., Hartley, W. J. and Dubey, J. P. (1990). Lesions of toxoplasmosis in Australian marsupials. Journal of Comparative Pathology 103, 159167.Google Scholar
Dubey, J. P., Ott-Joslin, J., Torgerson, R. W., Topper, M. J. and Sundberg, J. P. (1988). Toxoplasmosis in black-faced kangaroos (Macropus fuliginosus melanops). Veterinary Parasitology 30, 97–105.Google Scholar
Grigg, M. E. and Boothroyd, J. C. (2001). Rapid identification of virulent type I strains of the protozoan pathogen Toxoplasma gondii by PCR-restriction fragment length polymorphism analysis at the B1 gene. Journal of Clinical Microbiology 39, 398400.Google Scholar
Hartley, M. P. (2006). Toxoplasma gondii infection in two common wombats (Vombatus ursinus). Australian Veterinary Journal 84, 107109.Google Scholar
Johnson, A. M. (1997). Speculation on possible life cycles for the clonal lineages in the genus toxoplasma. Parasitology Today 13, 393397.Google Scholar
Johnson, A. M., Roberts, H., Statham, P. and Munday, B. L. (1989). Serodiagnosis of acute toxoplasmosis in macropods. Veterinary Parasitology 34, 2533.Google Scholar
Lindsay, D. S. and Dubey, J. P. (1989). Immunohistochemical diagnosis of Neospora caninum in tissue sections. American Journal of Veterinary Research 50, 19811983.Google Scholar
Lynch, M. J., Obendorf, D. L., Statham, P. and Reddacliff, G. L. (1993). An evaluation of a live Toxoplasma gondii vaccine in Tammar wallabies (Macropus eugenii). Australian Veterinary Journal 70, 352353.Google Scholar
Marshall, P. A., Hughes, J. M., Williams, R. H., Smith, J. E., Murphy, R. G. and Hide, G. (2004). Detection of high levels of congenital transmission of Toxoplasma gondii in natural urban populations of Mus domesticus. Parasitology 128, 3942.Google Scholar
Miller, M., Sverlow, K., Crosbie, P., Barr, B., Lowenstine, L., Gulland, F., Packham, A. and Conrad, P. (2001). Isolation and characterization of two parasitic protozoa from a Pacific harbor seal (Phoca vitulina richardsi) with meningoencephalomyelitis. Journal of Parasitology 87, 816822.Google Scholar
Miller, M. A., Miller, W. A., Conrad, P. A., James, E. R., Melli, A. C., Leutenegger, C. M., Dabritz, H. A., Packham, A. E., Paradies, D., Harris, M., Ames, J., Jessup, D. A., Worcester, K. and Grigg, M. E. (2008). Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: new linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters. International Journal for Parasitology 38, 13191328.Google Scholar
Morley, E. K., Williams, R. H., Hughes, J. M., Terry, R. S., Duncanson, P., Smith, J. E. and Hide, G. (2005). Significant familial differences in the frequency of abortion and Toxoplasma gondii infection within a flock of Charollais sheep. Parasitology 131, 181185.Google Scholar
Owen, M. R. and Trees, A. J. (1998). Vertical transmission of Toxoplasma gondii from chronically infected house (Mus musculus) and field (Apodemus sylvaticus) mice determined by polymerase chain reaction. Parasitology 116, 299304.Google Scholar
Parameswaran, N., O'Handley, R., Grigg, M. E., Fenwick, S. G. and Thompson, R. C. A. (2009). Seroprevalence of Toxoplasma gondii in wild kangaroos using an ELISA. Parasitology International (in the Press) doi: 10.1016/j.parint.2009.01.008Google Scholar
Poole, W. E., Carpenter, S. M. and Wood, J. T. (1982). Growth of grey kangaroos and the reliability of age determination from body measurements. II. The western grey kangaroos, Macropus fuliginosus, M. f. melanops and M. f. ocydromus. Australian Wildlife Research 9, 203212.Google Scholar
Remington, J. S., Jacobs, L. and Melton, M. L. (1961). Congenital transmission of toxoplasmosis from mother animals with acute and chronic infections. Journal of Infectious Diseases 108, 163173.Google Scholar
Skerratt, L. F., Phelan, J., McFarlane, R. and Speare, R. (1997). Serodiagnosis of toxoplasmosis in a common wombat. Journal of Wildlife Diseases 33, 346351.Google Scholar
Tyndale-Biscoe, H. and Renfree, M. B. (1987). Reproductive Physiology of Marsupials. Cambridge University Press, Cambridge, UK.Google Scholar