Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-27T21:05:02.929Z Has data issue: false hasContentIssue false

Impact of temporal changes and host factors on the genetic structure of a population of Opisthorchis viverrini sensu lato in Khon Kaen Province (Thailand)

Published online by Cambridge University Press:  15 June 2009

W. SAIJUNTHA
Affiliation:
Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Mahasarakham 44150, Thailand
P. SITHITHAWORN*
Affiliation:
Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand Liver Fluke and Cholangiocarcinoma Research Center (LFCRC), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
N. B. CHILTON
Affiliation:
Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
T. N. PETNEY
Affiliation:
Institute of Zoology 1: Ecology and Parasitology, University of Karlsruhe, Kornblumen Strasse 13, Karlsruhe, Germany
S. KLINBUNGA
Affiliation:
National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
R. SATRAWAHA
Affiliation:
Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Mahasarakham 44150, Thailand
J. P. WEBSTER
Affiliation:
Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, Norfolk Place, London W2 1PG, UK
R. H. ANDREWS
Affiliation:
School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
*
*Corresponding author: Department of Parasitology and Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand. Tel: +66 43348387. Fax: +66 43202475. E-mail: paib_sit@kku.ac.th

Summary

The population genetics of 317 individual Opisthorchis viverrini from Khon Kaen Province Thailand, from 4 different years and 4 cyprinid fish species was examined using multilocus enzyme electrophoresis of enolase (Enol), phosphoglucomutase (Pgm) and triose phosphate isomerase (Tpi). Allele and genotype frequencies for Enol and Pgm were consistent irrespective of year or host species. No heterozygote deficiency was detected for Enol. Significant heterozygote deficiencies were detected in 3 of 4 years for Pgm. For Tpi, allele frequencies of the most common allele and genotype frequency varied between years and among individuals from different host species. Heterozygote deficiencies for Tpi were detected in 2 years. No significant heterozygous deficiencies were detected among O. virerrini from different fish species in 2005, except at Pgm and Tpi from Puntioplites protozsron. There was no statistical significance in pairwise FST values between O. viverrini from Cyclocheilichthys armatus in different years or different host species in 2005. Significant departures from Hardy-Weinberg expectations and a high rate of gene flow in a population of O. viverrini are discussed in terms of self- and cross-fertilisation, natural selection, non-random mating, the Wahlund effect, presence of null alleles, intensity of infection, biology and ecology of their intermediate cyprinid hosts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, R. H., Sithithaworn, P. and Petney, T. N. (2008). Opisthorchis viverrini: an underestimated parasite in world health. Trends in Parasitology 24, 497501. doi:10.1016/j.pt.2008.08.011.CrossRefGoogle ScholarPubMed
Bartoli, J. and Pawlowski, , (2000). Cryptic speciation among intestinal parasites (Trematoda: Digenea) infecting sympatric host fishes (Sparidae). Journal of Evolutionary Biology 13, 778785. doi:org/10.1046/j.1420-9101.2000.00221.xGoogle Scholar
Blouin, M. S., Yowell, C. A., Courtney, C. H. and Dame, J. B. (1995). Host movement and the genetic structure of populations of parasitic nematodes. Genetics 141, 10071014.CrossRefGoogle ScholarPubMed
Criscione, C. D. and Blouin, M. S. (2006). Minimal selfing, few clones, and no among-host genetic structure in a hermaphroditic parasite with asexual larval propagation. Evolution 60, 553562. doi:10.1111/j.0014-3820.2006.tb01136.xGoogle Scholar
Criscione, C. D., Poulin, R. and Blouin, M. S. (2005). Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Molecular Ecology 14, 22472257. doi.org/10.1111/j.1365-294X.2005.02587.xCrossRefGoogle ScholarPubMed
Guo, S. W. and Thompson, E. A. (1992). Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361372.CrossRefGoogle ScholarPubMed
Honjo, S., Srivatanakul, P., Sriplung, H., Kikukawa, H., Hanai, S., Uchida, K., Todoroki, T. and Jedpiyawongse, A. (2005). Genetic and environmental determinants of risk for cholangiocarcinoma via Opisthorchis viverrini in a densely infested area in Nakhon Phanom, northeast Thailand. International Journal of Cancer 117, 854860. doi:10.1002/ijc.21146.CrossRefGoogle Scholar
Jongsuksuntigul, P. and Imsomboon, T. (2003). Opisthorchiasis control in Thailand. Acta Tropica 88, 229232. doi:10.1016/j.actatropica.2003.01.002.CrossRefGoogle ScholarPubMed
Kaewkes, S. (2003). Taxonomy and biology of liver flukes. Acta Tropica 88, 177186. doi:10.1016/j.actatropica.2003.05.001.CrossRefGoogle ScholarPubMed
Keeney, D. B., Waters, J. M. and Poulin, R. (2007). Diversity of trematode genetic clones within amphipods and the timing of same-clone infections. International Journal for Parasitology 37, 351357. doi:10.1016/j.ijpara.2006.11.004.CrossRefGoogle ScholarPubMed
Nollen, P. M. (1996 a). The mating behaviour of Echinostoma paraensei grown in mice. Journal of Helminthology 70, 4345.CrossRefGoogle ScholarPubMed
Nollen, P. M. (1996 b). Mating behaviour of Echinostoma caproni and E. paraensei in concurrent infections in mice. Journal of Helminthology 70, 133136.CrossRefGoogle Scholar
Nollen, P. M. (1997). Mating behaviour of Echinostoma caproni and E. trivolvis in concurrent infections in hamsters. International Journal for Parasitology 27, 7175. doi:10.1016/S0020-7519(96)00157-9.CrossRefGoogle Scholar
Raymond, M. and Rousset, F. (1995). Population genetics software for exact test and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Saijuntha, W., Sithithaworn, P., Wongkham, S., Laha, T., Pipitgool, V., Petney, T. N., Chilton, N. B. and Andrews, R. H. (2006 a). Enzyme markers to identify and characterize Opisthorchis viverrini in Thailand and Lao PDR. Southeast Asian Journal of Tropical Medicine and Public Health 37(Suppl 3), 4347.Google ScholarPubMed
Saijuntha, W., Sithithaworn, P., Wongkham, S., Laha, T., Pipitgool, V., Petney, T. N. and Andrews, R. H. (2006 b). Genetic markers for the identification and characterization of Opisthorchis viverrini, a medically important food borne trematode in Southeast Asia. Acta Tropica 100, 246251. doi:10.1016/j.actatropica.2006.11.001.CrossRefGoogle ScholarPubMed
Saijuntha, W., Sithithaworn, P., Wongkham, S., Laha, T., Pipitgool, V., Tesana, S., Chilton, N. B., Petney, T. N. and Andrews, R. H. (2007). Evidence of a species complex within the food-borne trematode Opisthorchis viverrini and possible co-evolution with their first intermediate hosts. International Journal for Parasitology 37, 695703. doi: 10.1016/j.ijpara.2006.12.008.CrossRefGoogle ScholarPubMed
Saijuntha, W., Sithithaworn, P., Wongkham, S., Laha, T., Satrawaha, R., Chilton, N. B., Petney, T. N. and Andrews, R. H. (2008). Genetic variation at three enzyme loci within a Thailand population of Opisthorchis viverrini. Parasitology Research 103, 12831287. doi: 10.1007/s00436-008-1128-8.CrossRefGoogle ScholarPubMed
Sithithaworn, P. and Haswell-Elkins, M. (2003). Epidemiology of Opisthorchis viverrini. Acta Tropica 88, 187194. doi:10.1016/j.actatropica.2003.02.001.CrossRefGoogle ScholarPubMed
Sithithaworn, P., Pipitgool, V., Srisawangwong, T., Elkins, D. B. and Haswell-Elkins, M. R. (1997). Seasonal variation of Opisthorchis viverrini infection in cyprinoid fish in north-east Thailand: implications for parasite control and food safety. Bulletin of the World Health Organization 75, 125131.Google ScholarPubMed
Sriamporn, S., Pisani, P., Pipiitgool, V., Suwanrungruang, K., Kamsa-ard, S. and Parkin, D. M. (2004). Prevalence of Opisthorchis viverrini infection and incidence of cholangiocarcinoma in Khon Kaen, Northeast Thailand. Tropical Medicine and International Health, 9, 588594.CrossRefGoogle Scholar
Sripa, B., Kaewkes, S., Sithithaworn, P., Mairiang, E., Laha, T., Smout, M., Pairojkul, C., Bhudhisawasdi, V., Tesana, S., Thinkamrop, B., Bethony, J. M., Loukas, A. and Brindley, P. J. (2007). Liver fluke induces cholangiocarcinoma. PLoS Medicine 4, e201. doi:10.1371/journal.pmed.0040201.CrossRefGoogle ScholarPubMed
Sripa, B. and Pairojkul, C. (2008). Cholangiocarcinoma: lessons from Thailand. Current Opinions in Gastroenterology 24, 349356.CrossRefGoogle ScholarPubMed
Steinauer, M. L., Nickol, B. and Orti, G. (2007). Cryptic speciation and patterns of phenotypic variation of a highly variable acanthocephalan parasite. Molecular Ecology 16, 40974109. doi:10.1111/j.1365-294X.2007.03462.xCrossRefGoogle ScholarPubMed
Thiele, E. A., Sorensen, R. E., Gazzinelli, A. and Minchella, D. J. (2008). Genetic diversity and population structuring of Schistosoma mansoni in a Brazilian village. International Journal for Parasitology 38, 389399. doi:10.1016/j.ijpara.2007.07.011.CrossRefGoogle Scholar
Trouve, R., Renaud, F., Durand, P. and Jourdane, J. (1996). Selfing and outcrossing in a parasitic hermaphrodite helminth (Trematoda, Echinostomatidae). Heredity 77, 18.CrossRefGoogle Scholar
Upatham, E. S., Viyanant, V., Kurathong, S., Brockelman, W. Y., Menaruchi, A., Saowakontha, S., Intarakhao, C., Vajrasthira, S. and Warren, K. S. (1982). Morbidity in relation to intensity of infection in Opisthorchiasis viverrini: study of a community in Khon Kaen, Thailand. American Journal of Tropical Medicine and Hygiene 31, 11561163.CrossRefGoogle ScholarPubMed
Vilas, R., Sanmartin, M. L. and Paniagua, E. (2004). Genetic variability of natural populations of trematodes of the genus Lecithochirium parasites of eels. Parasitology 129, 191201. doi:10.1017/S0031182004005402.CrossRefGoogle ScholarPubMed
Wang, T. P., Shrivastava, J., Johansen, M. V., Zhang, S. Q., Wang, F. F. and Webster, J. P. (2006). Does multiple hosts mean multiple parasites? Population genetic structure of Schistosoma japonicum between definitive host species. International Journal for Parasitology 36, 13171325. doi:10.1016/j.ijpara.2006.06.011.CrossRefGoogle ScholarPubMed
Weir, B. S. and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed
World Health Organization (1995). Control of Food Borne Trematode Infections. WHO Technical Report Series No. 849. World Health Organization, Geneva.Google Scholar