Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T15:06:56.045Z Has data issue: false hasContentIssue false

The Evolution of Ultrafast Electron Microscope Instrumentation

Published online by Cambridge University Press:  03 July 2009

B.W. Reed*
Affiliation:
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
M.R. Armstrong
Affiliation:
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
N.D. Browning
Affiliation:
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616, USA
G.H. Campbell
Affiliation:
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
J.E. Evans
Affiliation:
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
T. LaGrange
Affiliation:
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
D.J. Masiel
Affiliation:
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616, USA
*
Corresponding author. E-mail: reed12@llnl.gov
Get access

Abstract

Extrapolating from a brief survey of the literature, we outline a vision for the future development of time-resolved electron probe instruments that could offer levels of performance and flexibility that push the limits of physical possibility. This includes a discussion of the electron beam parameters (brightness and emittance) that limit performance, the identification of a dimensionless invariant figure of merit for pulsed electron guns (the number of electrons per lateral coherence area, per pulse), and calculations of how this figure of merit determines the trade-off of spatial against temporal resolution for different imaging modes. Modern photonics' ability to control its fundamental particles at the quantum level, while enjoying extreme flexibility and a very large variety of operating modes, is held up as an example and a goal. We argue that this goal may be approached by combining ideas already in the literature, suggesting the need for large-scale collaborative development of next-generation time-resolved instruments.

Type
Special Section: Ultrafast Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, M.R., Reed, B.W., Torralva, B.R. & Browning, N.D. (2007). Prospects for electron imaging with ultrafast time resolution. Appl Phys Lett 90, 114101.CrossRefGoogle Scholar
Bals, S., Kabius, B., Haider, M., Radmilovic, V. & Kisielowski, C. (2004). Annular dark field imaging in a TEM. Solid State Comm 130, 675680.CrossRefGoogle Scholar
Bostanjoglo, O., Elschner, R., Mao, Z., Nink, T. & Weingartner, M. (2000). Nanosecond electron microscopes. Ultramicroscopy 81, 141147.Google Scholar
Boussoukaya, M., Bergeret, H., Chehab, R., Leblond, B. & Leduff, J. (1989). High quantum yield from photofield emitters. Nucl Instrum Meth Phys Res A 279, 405409.CrossRefGoogle Scholar
Brau, C.A. (2000). What brightness means. In ICFA Workshop on the Physics and Applications of High Brightness Electron Beams, Rosenzweig, J., Travish, G. & Serafni, L. (Eds.), pp. 127. Singapore: World Scientific.Google Scholar
Christenson, K.K. & Eades, J.A. (1988). Skew thoughts on parallelism. Ultramicroscopy 26, 113132.CrossRefGoogle Scholar
Claessens, B.J., van der Geer, S.B., Taban, G., Vredenbregt, E.J.D. & Luiten, O.J. (2005). Ultracold electron source. Phys Rev Lett 95, 164801.CrossRefGoogle ScholarPubMed
Gahlmann, A., Park, S.T. & Zewail, A.H. (2008). Ultrashort electron pulses for diffraction, crystallography, and microscopy: Theoretical and experimental resolutions. Phys Chem Chem Phys 10, 28942909.CrossRefGoogle ScholarPubMed
Garcia, C.H. & Brau, C.A. (2002). Pulsed photoelectric field emission from needle cathodes. Nucl Instrum Meth Phys Res A 483, 273276.CrossRefGoogle Scholar
Hastings, J.B., Rudakov, F.M., Dowell, D.H., Schmerge, J.F., Cardoza, J.D., Castro, J.M., Gierman, S.M., Loos, H. & Weber, P.M. (2006). Ultrafast time-resolved electron diffraction with megavolt electron beams. Appl Phys Lett 89, 184109.Google Scholar
Hebeisen, C.T., Ernstorfer, R., Harb, M., Dartigalongue, T., Jordn, R.E. & Miller, R.J.D. (2006). Femtosecond electron pulse characterization using laser ponderomotive scattering. Opt Lett 31, 35173519.CrossRefGoogle ScholarPubMed
Hommelhoff, P., Sortais, Y., Adhajani-Talesh, A. & Kasevich, M.A. (2006). Field emission tip as a nanometer source of free electron femtosecond pulses. Phys Rev Lett 96, 077401.Google Scholar
Kim, J.S., LaGrange, T., Reed, B.W., Taheri, M.L., Armstrong, M.R., King, W.E., Browning, N.D. & Campbell, G.H. (2008). Imaging of transient structures using nanosecond in situ TEM. Science 321, 14721475.Google Scholar
King, W.E., Campbell, G.H., Frank, A., Reed, B., Schmerge, J.F., Siwick, B.J., Stuart, B.C. & Weber, P.M. (2005). Ultrafast electron microscopy in materials science, biology, and chemistry. J Appl Phys 97, 111101.CrossRefGoogle Scholar
Krivanek, O.L. (1992). Practical high-resolution electron microscopy. In High-Resolution Transmission Electron Microscopy and Associated Techniques, Buseck, P., Cowley, J. & Eyring, L. (Eds.), pp. 519567. New York: Oxford University Press.Google Scholar
Krivanek, O.L., Corbin, G.J., Dellby, B., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscopy for the aberration-corrected era. Ultramicroscopy 108, 179195.CrossRefGoogle Scholar
Kruit, P., Bezuijen, M. & Barth, J.E. (2006). Source brightness and useful beam current of carbon nanotubes and other very small emitters. J Appl Phys 99, 024315.Google Scholar
Kruit, P. & Jansen, G.H. (1997). Space charge and statistical coulomb effects. In Handbook of Charged Particle Optics, Orloff, J. (Ed.), pp. 275318. Boca Raton, FL: CRC Press.Google Scholar
LaGrange, T., Armstrong, M.R., Boyden, K., Brown, C.G., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., Gibson, D.J., Hartemann, F.V., Kim, J.S., King, W.E., Pyke, B.J., Reed, B.W., Shirk, M.D., Shuttlesworth, R.M., Stuart, B.C., Torralva, B.R. & Browning, N.D. (2006). Single-shot dynamic transmission electron microscopy. Appl Phys Lett 89, 044105.Google Scholar
LaGrange, T., Campbell, G.H., Reed, B.W., Taheri, M., Pesavento, J.B., Kim, J.S. & Browning, N.D. (2008). Nanosecond time-resolved investigations using the in situ dynamic transmission electron microscope (DTEM). Ultramicroscopy 108, 14411449.CrossRefGoogle ScholarPubMed
LaGrange, T., Campbell, G.H., Turchi, P.E.A. & King, W.E. (2007). Rapid phase transformation kinetics on a nanoscale: Studies of the α → β transformation in pure, nanocrystalline Ti using the nanosecond dynamic transmission electron microscope. Acta Mater 55, 52115224.CrossRefGoogle Scholar
Lobastov, V.A., Srinivasan, R. & Zewail, A.H. (2005). Four-dimensional ultrafast electron microscopy. Proc Natl Acad Sci USA 102, 70697073.Google Scholar
Luiten, O.J., van der Geer, S.B., de Loos, M.J., Kiewiet, F.B. & van der Wiel, M.J. (2004). How to realize uniform three-dimensional ellipsoidal electron bunches. Phys Rev Lett 93, 094802.Google Scholar
Michalik, A.M. & Sipe, J.E. (2006). Analytic model of electron pulse propagation in ultrafast electron diffraction experiments. J Appl Phys 99, 054908.CrossRefGoogle Scholar
Mourou, G. & Williamson, S. (1982). Picosecond electron diffraction. Appl Phys Lett 41, 4445.CrossRefGoogle Scholar
Musumeci, P., Moody, J.T., England, R.J., Rosenzweig, J.B. & Tran, T. (2008a). Experimental generation and characterization of uniformly filled ellipsoidal electron-beam distributions. Phys Rev Lett 100, 244801.CrossRefGoogle ScholarPubMed
Musumeci, P., Moody, J.T. & Scoby, C.M. (2008b). Relativistic electron diffraction at the UCLA Pegasus Photoinjector Laboratory. Ultramicroscopy 108, 14501453.Google Scholar
Reed, B.W. (2006). Femtosecond electron pulse propagation for ultrafast electron diffraction. J Appl Phys 100, 034916.CrossRefGoogle Scholar
Reiser, M. (1994). Theory and Design of Charged Particle Beams. New York: John Wiley & Sons.CrossRefGoogle Scholar
Rose, A. (1948). Television pickup tubes and the problem of vision. Adv Electron El Phys 1, 131–66.CrossRefGoogle Scholar
Rose, H. & Spehr, R. (1983). Energy broadening in high-density electron and ion beams—The Boersch effect. Adv Electron El Phys Suppl 13C, 475530.Google Scholar
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Miller, R.J.D. (2002). Ultrafast electron optics: Propagation dynamics of femtosecond electron packets. J Appl Phys 92, 16431648.CrossRefGoogle Scholar
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Miller, R.J.D. (2003). An atomic-level view of melting using femtosecond electron diffraction. Science 302, 13821385.CrossRefGoogle ScholarPubMed
Spence, J.C.H. & Howells, M.R. (2002). Synchrotron soft X-ray and field-emission electron sources: A comparison. Ultramicroscopy 93, 213222.Google Scholar
Spivak, G.V., Pavlyuchenko, O.P. & Petrov, V.I. (1966). Electron microscopic observation of alterations of the domain structure of magnetic films. Bull Acad Sci USSR Physical Series 30, 822826.Google Scholar
Takaoka, A. & Ura, K. (1983). Stroboscopic TEM with time resolution of 30 μs. J Electron Microsc 32, 299304.Google Scholar
van Oudheusden, T., de Jong, E.F., van der Geer, S.B., Op't Root, W.P.E.M., Luiten, O.J. & Siwick, B.J. (2007). Electron source concept for single-shot sub-100 fs electron diffraction in the 100 kev range. J Appl Phys 102, 093501.CrossRefGoogle Scholar
Vellekoop, I.M., van Putten, E.G., Lagendijk, A. & Mosk, A.P. (2008). Demixing light paths inside disordered metamaterials. Opt Express 16, 6875.CrossRefGoogle ScholarPubMed
Zewail, A.H. (2006). 4D ultrafast electron diffraction, crystallography, and microscopy. Annu Rev Phys Chem 57, 65103.Google Scholar
Zolotorev, M., Commins, E.D. & Sannibale, F. (2007). Proposal for a quantum-degenerate electron source. Phys Rev Lett 98, 184801.CrossRefGoogle ScholarPubMed