Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T14:11:40.580Z Has data issue: false hasContentIssue false

RNA-interference methods for gene-knockdown in the sea louse, Lepeophtheirus salmonis: studies on a putative prostaglandin E synthase

Published online by Cambridge University Press:  03 June 2009

E. M. CAMPBELL
Affiliation:
School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, AberdeenAB24 2TZ, UK
C. C. PERT
Affiliation:
Marine Scotland, Marine Laboratory, 375 Victoria Road, AberdeenAB11 9DB, UK
A. S. BOWMAN*
Affiliation:
School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, AberdeenAB24 2TZ, UK
*
*Corresponding author: School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, AberdeenAB24 2TZ, UK. Tel: +44 1224 272877. Fax: +44 1224 272396. E-mail: a.bowman@abdn.ac.uk

Summary

Harnessing the full utility of extensive gene sequences recently available for the economically important sea louse, Lepeophtheirus salmonis, requires the adaptation of modern molecular biology approaches to this non-model organism. Using a putative microsomal prostaglandin E synthase type-2 (PGES2) as a candidate gene, we investigated gene-knockdown by double-stranded RNA interference (dsRNAi) in the small free-living and the larger parasitic stages of L. salmonis. dsRNA was administered to nauplius and copepodid stages by immersion for 7 h. Pre-adult and adults received dsRNA by intra-haemocoelic injection. The extent, speed and persistence of the knockdown effects were determined by RT-PCR. LsPGES2 was abundantly expressed in all life stages, including the non-parasitic stages. Administration of dsRNA to nauplius and copepodids by immersion had no effect on mortality rates and moulting through to copepodids was observed. Dramatic knockdown of LsPGES2 was observed within 7 h and persisted for at least 48 h. Injection of dsRNA had no effect on mortality in pre-adults and adults, but knockdown of LsPGES2 was apparent within 24 h, reaching 95% over the 72 h and was persistent for at least 120 h. The methods developed resulted in rapid and persistent knockdown in L. salmonis suitable for studies in the different stadia.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Costello, M. J. (2009). The global economic cost of sea lice to the salmonid farming industry. Journal of Fish Diseases 32, 115118. doi: 10.1111/j.1365-2761.2008.01011.x ER.CrossRefGoogle Scholar
de la Fuente, J., Kocan, K. M., Almazan, C. and Blouin, E. F. (2007). RNA interference for the study and genetic manipulation of ticks. Trends in Parasitology 23, 427433. doi: 10.1016/j.pt.2007.07.002 ER.CrossRefGoogle Scholar
Fast, M. D., Johnson, S. C., Eddy, T. D., Pinto, D. and Ross, N. W. (2007). Lepeophtheirus salmonis secretory/excretory products and their effects on Atlantic salmon immune gene regulation. Parasite Immunology 29, 179189. doi: 10.1111/j.1365-3024.2006.00932.x ER.CrossRefGoogle ScholarPubMed
Fast, M. D., Ross, N. W., Craft, C. A., Locke, S. J., MacKinnon, S. L. and Johnson, S. C. (2004). Lepeophtheirus salmonis: characterization of prostaglandin E-2 in secretory products of the salmon louse by RP-HPLC and mass spectrometry. Experimental Parasitology 107, 5–13. doi: 10.1016/j.exppara.2004.04.001 ER.CrossRefGoogle ScholarPubMed
Graf, J. F., Gogolewski, R., Leach-Bing, N., Sabatini, G. A., Molento, M. B., Bordin, E. L. and Arantes, G. J. (2004). Tick control: an industry point of view. Parasitology 129, S427S442. doi:10.1017/S0031182004006079 ER.CrossRefGoogle ScholarPubMed
Hayes, J. D., Flanagan, J. U. and Jowsey, I. R. (2005). Glutathione transferases. Annual Review of Pharmacology and Toxicology 45, 5188. doi: 10.1146/annurev.pharmtox.45.120403.095857 ER.CrossRefGoogle ScholarPubMed
Hui, J. H. L., Tobe, S. S. and Chan, S. M. (2008). Characterization of the putative farnesoic acid O-methyltransferase (LvFAMeT) cDNA from white shrimp, Litopenaeus vannamei: Evidence for its role in molting. Peptides 29, 252260. doi: 10.1016/j.peptides.2007.08.033 ER.CrossRefGoogle ScholarPubMed
Jakobsson, P. J., Thoren, S., Morgenstern, R. and Samuelsson, B. (1999). Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proceedings of the National Academy of Sciences, USA 96, 72207225.CrossRefGoogle ScholarPubMed
Lees, K. and Bowman, A. S. (2007). Tick neurobiology: recent advances and the post-genomic era. Invertebrate Neuroscience 7, 183198. doi: 10.1007/s10158-007-0060-4CrossRefGoogle ScholarPubMed
Marchler-Bauer, A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., Gwadz, M., Hao, L. N., He, S. Q., Hurwitz, D. I., Jackson, J. D., Ke, Z. X., Krylov, D., Lanczycki, C. J., Liebert, C. A., Liu, C. L., Lu, F., Lu, S. N., Marchler, G. H., Mullokandov, M., Song, J. S., Thanki, N., Yamashita, R. A., Yin, J. J., Zhang, D. C. and Bryant, S. H. (2007). CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Research 35, D237D240. doi: 10.1093/nar/gkl951 ER.CrossRefGoogle ScholarPubMed
Minakuchi, C., Namiki, T. and Shinoda, T. (2009). Kruppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Developmental Biology 325, 341350. doi: 10.1016/j.ydbio.2008.10.016 ER.CrossRefGoogle ScholarPubMed
Pike, A. W. and Wadsworth, S. L. (2000). Sealice on salmonids: their biology and control. Advances in Parasitology 44, 233337.CrossRefGoogle Scholar
Samuelsson, B., Morgenstern, R. and Jakobsson, P. J. (2007). Membrane prostaglandin E synthase-1: A novel therapeutic target. Pharmacological Reviews 59, 207224. doi: 10.1124/pr.59.3.1 ER.CrossRefGoogle ScholarPubMed
Shakesby, A. J., Wallace, I. S., Isaacs, H. V., Pritchard, J., Roberts, D. M. and Douglas, A. E. (2009). A water-specific aquaporin involved in aphid osmoregulation. Insect Biochemistry and Molecular Biology 39, 110. doi: 10.1016/j.ibmb.2008.08.008 ER.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599. doi: 10.1093/molbev/msm092 ER.CrossRefGoogle ScholarPubMed
Wagner, G. N., Fast, M. D. and Johnson, S. C. (2008). Physiology and immunology of Lepeophtheirus salmonis infections of salmonids. Trends in Parasitology 24, 176183. doi: 10.1016/j.pt.2007.12.010 ER.CrossRefGoogle ScholarPubMed
Walshe, D. P., Lehane, S. M., Lehane, M. J. and Haines, L. R. (2009). Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Molecular Biology 18, 1119. doi: 10.1111/j.1365-2583.2008.00839.x ER.CrossRefGoogle ScholarPubMed
Woods, D. J. and Williams, T. M. (2007). The challenges of developing novel antiparasitic drugs. Invertebrate Neuroscience 7, 245250. doi: 10.1007/s10158-007-0055-1CrossRefGoogle ScholarPubMed