Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T13:48:07.669Z Has data issue: false hasContentIssue false

Complexity of Pseudomonas aeruginosa infection in cystic fibrosis: combined results from esterase electrophoresis and rDNA restriction fragment length polymorphism analysis

Published online by Cambridge University Press:  19 October 2009

E. Denamur
Affiliation:
Laboratoire de Biochimie Génétique, Hôpital Robert Debré, 48 bd Sérurier – 75935 Paris Cedex 19
B. Picard
Affiliation:
Laboratoire de Microbiologie, Faculté Xavier Bichal, 16, rue Henri Huchard – 75018, Paris
Ph. Goullet
Affiliation:
Laboratoire de Microbiologie, Faculté Xavier Bichal, 16, rue Henri Huchard – 75018, Paris
E. Bingen
Affiliation:
Laboratoire de Microbiologie, Hôpital Robert Debré, 48 bd Sérurier – 75935, Paris
N. Lambert
Affiliation:
Laboratoire de Microbiologie, Hôpital Robert Debré, 48 bd Sérurier – 75935, Paris
J. Elion
Affiliation:
Laboratoire de Biochimie Génétique, Hôpital Robert Debré, 48 bd Sérurier – 75935 Paris Cedex 19
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Esterase electrophoretic typing and restriction fragment length polymorphism of ribosomal DNA regions (ribotyping) were used to differentiate 102 Pseudomonas aeruginosa clinical isolates obtained from chronic lung infection in 23 patients with cystic fibrosis (CF) and two reference strains (including the type strain ATCC 10145). Twenty-five zymotypes were obtained with the former method and 16 ribotypes with the latter. Combination of the two typing systems led to the finding of 30 different types. Our data highlights the physiopathological complexity of P. aeruginosa infection in CF as, in six individual cases, several types were found among isolates from a given patient. On the other hand, two unique types were found in two and three patients respectively, raising the possibility of crossinfections.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

REFERENCES

1.Pitt, TL. Epidemiological typing of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 1988; 7: 238–47.CrossRefGoogle ScholarPubMed
2.Grothues, D, Koopmann, U, Von Der Hardt, H, Tummler, B. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol 1988; 26: 1973–7.Google Scholar
3.Ogle, JW, Janda, JM, Woods, DE, Vasil, ML. Characterization and use of a DNA probe as an epidemiological marker for Pseudomonas aeruginosa. J Infec Dis 1987; 155: 119–26.Google Scholar
4.Pasloke, BL, Joffe, AM, Sun, Q, Volpel, K, Paranchych, W, Eftekhar, F, Speert Dp. Serial isolates of Pseudomonas aeruginosa from a cystic fibrosis patient have identical pilin sequences. Infect Immun 1988; 56: 665–72.CrossRefGoogle Scholar
5.Samadpour, M, Moseley, Sl, Lory, S.Biotinylated DNA probes for exotoxin A and pilin genes in the differentiation of Pseudomonas aeruginosa strains. J Clin Microbiol 1988; 26: 2319–23.CrossRefGoogle ScholarPubMed
6.Wolz, C, Kiosz, D, Ogle, JW, Vasil, ML, Schaad, U, Botzenhart, K, Döring, G.Pseudomonas aeruginosa cross-colonization and persistance in patients with cystic fibrosis. Use of a DNA probe. Epidemiol Infect 1989; 102: 205–14.CrossRefGoogle ScholarPubMed
7.Döring, G, Bareth, H, Gairing, A, Wolz, C, Botzenhart, K.Genotyping of Pseudomonas aeruginosa sputum and stool isolates from cystic fibrosis patients: evidence for intestinal colonization and spreading into toilets. Epidemiol Infect 1989; 103: 555–64.CrossRefGoogle ScholarPubMed
8.Speert, DP, Campbell, ME, Farmer, SW, Volpel, K, Joffe, AM, Paranchy, W.Use of a pilin gene probe to study molecular epidemiology of Pseudomonas aeruginosa. J Clin Microbiol 1989; 27: 2589–93.CrossRefGoogle ScholarPubMed
9.Pattyn, S, Mertens, G.Esterase iso-enzyme electrophoresis for epidemiological surveillance of Pseudomonas aeruginosa hospital infections. Eur J Clin Microbiol 1988; 7: 821–2.CrossRefGoogle ScholarPubMed
10.Pitt, TL, Livermore, DM, Pitcher, D, Vatopoulos, AC, Legakis, NJ. Multiresistant serotype 012 Pseudomonas aeruginosa: evidence for a common strain in Europe. Epidemiol Infect 1989; 103: 565–76.CrossRefGoogle Scholar
11.Goullet, PH, Picard, B.Pseudomonas aeruginosa isolate typing by esterase electrophoresis. FEMS Microbiol Lett 1990. In press.Google Scholar
12.Hoiby, N, Flensborg, EW, Beck, B, Friis, B, Jacobsen, SU, Jacobsen, L.Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scan J Resp Dis 1977; 58: 6579.Google ScholarPubMed
13.Lennox, ES.Transduction of linked genetic characters of the host by bacteriophage PI. Virol 1955; 1: 190206.CrossRefGoogle Scholar
14.Goullet, PH.An esterase zymogram of Escherichia coli. J Gen Microbiol 1973; 77: 2735.CrossRefGoogle ScholarPubMed
15.Uriel, J.Mwthode d'électrophorese dans des gels d'acrylamide-agarose. Bui Soc Chim Biol 1966; 48: 969–82.Google Scholar
16.Goullet, PH, Picard, B.A two-dimensional electrophoretic profile for bacterial esterases. Electrophoresis 1985; 6: 132–5.CrossRefGoogle Scholar
17.Lawrence, SH, Melnick, PJ, Weimer, HE. A comparison of serum proteins and enzymes by starch-gel electrophoresis. Proc Soc Experim Biol Med 1960; 105: 572–5.CrossRefGoogle ScholarPubMed
18.Uriel, J.Caractérisation des cholinestérases et d'autres estérases carboxyliques après électrophorèse et immunoélectrophorèse en gélose (application à l'étude des estérases du sérum humain normal). Ann Inst Pasteur 1961; 101: 104–19.Google Scholar
19.Picard-Pasquier, N, Ouagued'M, , Picard, B, Goullet, PH, Krishnamoorthy, R.A simple sensitive method of analyzing bacterial ribosomal DNA polymorphism. Electrophoresis 1989; 10: 186–9.CrossRefGoogle ScholarPubMed
20.Southern, EM.Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98: 503–17.CrossRefGoogle ScholarPubMed
21.Conroy, JV, Batch, AL, Smith, RP, Hammer, MC, Griffin, PE.Bacteremia due to Pseudomonas aeruginosa: use of a combined typing system in an eight-year study. J Infect Dis 1983; 148: 603.Google Scholar
22.Levin, MH, Weinstein, RA, Nathan, C, Selander, RK, Ochman, H, Kabins, SA.Association of infection caused by Pseudomonas aeruginosa serotype Oil with intravenous abuse of pentazocine mixed with tripelennamine. J Clin Microbiol 1984; 20: 758–62.CrossRefGoogle Scholar
23.Griffith, SJ, Nathan, C, Selander, RK, Chamberlin, W, Gordon, S, Kabins, S, Weinstein, RA.The epidemiology of Pseudomonas aeruginosa in oncology patients in a general hospital. J Infec Dis 1989; 160: 1030–6.Google Scholar
24.Goullet, PH, Picard, B.Typage électrophorétique des estérases d'Escherichia coli au cours de septicémies. Presse Med 1984; 13: 1079–81.Google Scholar
25.Branger, C, Goullet, PH. Esterase electrophoretic polymorphism of methicillin-sensitive and methicillin-resistant strains of Staphycoloccus aureus. J Med Microbiol 1987; 23: 275–81.CrossRefGoogle Scholar
26.Picard, B, Goullet, PH.Epidemiological complexity of hospital Aeromonas infections revealed by electrophoretic typing of esterases. Epidemiol Infect 1987; 98: 514.CrossRefGoogle ScholarPubMed
27.Picard, B, Bruneau, B, Goullet, PH.Demonstration of an outbreak of Serratia marcescens infections in a medical intensive care unit by esterase electrophoretic typing. J Hosp Infect 1988; 11: 194–5.CrossRefGoogle Scholar
28.Picard, B, Goullet, PH, Denamur, E, Suermondt, G.Esterase electrophoresis: a molecular tool for studying the epidemiology of Branhamella catarrhalis nosocomial infection. Epidemiol Infect 1989; 103: 547–54.CrossRefGoogle ScholarPubMed
29.Grimont, F, Grimont, PAD.Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur/Microbiol 1986; 137B: 165–75.CrossRefGoogle Scholar
30.Stull, TL, Lipuma, JJ, Edlind, TD. A broad spectrum probe for molecular epidemiology of bacteria: ribosomal RNA. J Infect Dis 1988; 157: 280–86.CrossRefGoogle ScholarPubMed
31.Woese, CR.Bacterial evolution. Microbiol Rev 1987; 51: 221–71.CrossRefGoogle ScholarPubMed